login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Sum of odd divisors of n that are <= A003056(n).
5

%I #26 Mar 25 2023 12:08:04

%S 1,1,1,1,1,4,1,1,4,1,1,4,1,1,9,1,1,4,1,6,4,1,1,4,6,1,4,8,1,9,1,1,4,1,

%T 13,4,1,1,4,6,1,11,1,1,18,1,1,4,8,6,4,1,1,13,6,8,4,1,1,9,1,1,20,1,6,

%U 15,1,1,4,13,1,13,1,1,9,1,19,4,1,6,13,1,1,11,6,1,4,12,1,18,21

%N Sum of odd divisors of n that are <= A003056(n).

%C Conjecture 1: a(n) is also the total number de parts in all partitions of n into an odd number of consecutive parts. - _Omar E. Pol_, Mar 16 2022

%C Conjecture 2: row sums of A352269. - _Omar E. Pol_, Mar 18 2022

%H Paolo Xausa, <a href="/A341309/b341309.txt">Table of n, a(n) for n = 1..10000</a>

%F a(n) = A204217(n) - A352446(n), conjectured. - _Omar E. Pol_, Mar 16 2022

%t A341309[n_]:=With[{t=Floor[(Sqrt[8n+1]-1)/2]},DivisorSum[n,#&,OddQ[#]&&#<=t&]];

%t Array[A341309,100] (* _Paolo Xausa_, Mar 25 2023 *)

%o (PARI) a(n) = my(m=n>>valuation(n, 2), s=(sqrtint(8*n+1)-1)\2); sumdiv(m, d, if (d <= s, d)); \\ _Michel Marcus_, Mar 25 2023

%Y Cf. A000593, A003056, A082647, A131576, A333807, A341310.

%K nonn

%O 1,6

%A _N. J. A. Sloane_, Feb 14 2021