login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Let f(n) = floor(r*floor(r*n)) = A341254(n), where r = (2 + sqrt(5))/2. Let a(1) = 1. Then a(n) = f(a(n-1)) for n >= 2.
2

%I #6 Dec 10 2023 17:25:18

%S 1,4,16,69,309,1385,6212,27866,125008,560793,2515754,11285842,

%T 50629052,227125366,1018899829,4570853893,20505161277,91987547377,

%U 412662390616,1851231536059,8304750512850,37255675336820,167131492108634,749763234780300,3363488838254558

%N Let f(n) = floor(r*floor(r*n)) = A341254(n), where r = (2 + sqrt(5))/2. Let a(1) = 1. Then a(n) = f(a(n-1)) for n >= 2.

%t z = 40; u = GoldenRatio;

%t r = u + 1/2; f[x_] := Floor[r*Floor[r*x]];

%t Table[f[n], {n, 1, z}] (* A341254 *)

%t a[1] = 1; a[n_] := f[a[n - 1]];

%t Table[a[n], {n, 1, z}] (* A341255 *)

%Y Cf. A339828, A341240, A341249.

%K nonn,easy

%O 1,2

%A _Clark Kimberling_, Feb 13 2021