login
Square array T(n,k), n >= 0, k >= 0, read by antidiagonals, where T(n,k) = Sum_{j=0..n} j^k * (n-j)! * binomial(n,j)^2.
2

%I #15 Feb 07 2021 00:42:19

%S 1,0,2,0,1,7,0,1,6,34,0,1,8,39,209,0,1,12,63,292,1546,0,1,20,117,544,

%T 2505,13327,0,1,36,243,1168,5225,24306,130922,0,1,68,549,2800,12525,

%U 55656,263431,1441729,0,1,132,1323,7312,33425,145836,653023,3154824,17572114

%N Square array T(n,k), n >= 0, k >= 0, read by antidiagonals, where T(n,k) = Sum_{j=0..n} j^k * (n-j)! * binomial(n,j)^2.

%F About e.g.f. of column k, see A105218 or A105219 comment.

%e Square array begins:

%e 1, 0, 0, 0, 0, 0, ...

%e 2, 1, 1, 1, 1, 1, ...

%e 7, 6, 8, 12, 20, 36, ...

%e 34, 39, 63, 117, 243, 549, ...

%e 209, 292, 544, 1168, 2800, 7312, ...

%e 1546, 2505, 5225, 12525, 33425, 97125, ...

%t T[n_, k_] := Sum[If[j == k == 0, 1, j^k] * (n - j)! * Binomial[n, j]^2, {j, 0, n}]; Table[T[k, n - k], {n, 0, 9}, {k, 0, n}] // Flatten (* _Amiram Eldar_, Feb 06 2021 *)

%o (PARI) T(n, k) = sum(j=0, n, j^k*(n-j)!*binomial(n, j)^2);

%Y Columns k=0..4 gives A002720, A103194, A105219, A105218, A341196.

%Y Main diagonal gives A341197.

%Y Cf. A289192.

%K nonn,tabl

%O 0,3

%A _Seiichi Manyama_, Feb 06 2021