login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = [x^n] (x - 1)^4/((1 - 2*x)*(x^2 - 3*x + 1)).
1

%I #11 Feb 24 2021 15:29:20

%S 1,1,4,11,30,81,217,578,1533,4053,10690,28145,74001,194370,510133,

%T 1338077,3508194,9194697,24092281,63114914,165317997,432970149,

%U 1133854594,2969117921,7774547745,20356622466,53299513957,139550308013,365368187298,956587808313,2504462346505

%N a(n) = [x^n] (x - 1)^4/((1 - 2*x)*(x^2 - 3*x + 1)).

%C Row sums of A341103.

%F a(n) = Sum_{k=0..n} Sum_{j=0..k}(binomial(n + k - j, 2*k) - binomial(n + j - 1, 2*k)) for n >= 1.

%F a(n) = 5*a(n-1) - 7*a(n-2) + 2*a(n-3) for n >= 5.

%o (PARI) a(n) = if (n, sum(k=0, n, sum(j=0, k, binomial(n+k-j, 2*k) - binomial(n+j-1, 2*k))), 1); \\ _Michel Marcus_, Feb 24 2021

%Y Cf. A341103.

%K nonn,easy

%O 0,3

%A _Peter Luschny_, Feb 24 2021