Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #25 Feb 17 2023 08:33:22
%S 1,2,1,3,1,2,4,1,1,2,3,5,1,1,2,2,3,4,6,1,1,1,1,2,2,3,3,4,5,7,1,1,1,1,
%T 2,2,2,2,3,3,4,4,5,6,8,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3,4,4,5,5,6,7,9,1,
%U 1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,5,5,6,6,7,8,10
%N Irregular triangle read by rows T(n,k) in which row n lists the terms of n-th row of A336811 in nondecreasing order.
%C All divisors of all terms of n-th row are also all parts of the last section of the set of partitions of n.
%C All divisors of all terms of the first n rows are also all parts of all partitions of n. In other words: all divisors of the first A000070(n-1) terms of the sequence are also all parts of all partitions of n.
%C For further information about the correspondence divisor/part see A338156 and A336812.
%H Paolo Xausa, <a href="/A341049/b341049.txt">Table of n, a(n) for n = 1..11732 (rows 1..27 of triangle, flattened)</a>
%e Triangle begins:
%e 1;
%e 2;
%e 1, 3;
%e 1, 2, 4;
%e 1, 1, 2, 3, 5;
%e 1, 1, 2, 2, 3, 4, 6;
%e 1, 1, 1, 1, 2, 2, 3, 3, 4, 5, 7;
%e 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 4, 4, 5, 6, 8;
%e 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 5, 5, 6, 7, 9;
%e ...
%t A341049[rowmax_]:=Table[Flatten[Table[ConstantArray[n-m,PartitionsP[m]-PartitionsP[m-1]],{m,n-1,0,-1}]],{n,rowmax}];
%t A341049[10] (* Generates 10 rows *) (* _Paolo Xausa_, Feb 17 2023 *)
%o (PARI)
%o A341049(rowmax)=vector(rowmax,n,concat(vector(n,m,vector(numbpart(n-m)-numbpart(n-m-1),i,m))));
%o A341049(10) \\ Generates 10 rows - _Paolo Xausa_, Feb 17 2023
%Y Mirror of A336811.
%Y Row n has length A000041(n-1).
%Y Row sums give A000070.
%Y Right border gives A000027.
%Y Cf. A000070, A000041, A002865, A027750, A028310, A133735, A135010, A138121, A138137, A176206, A182703, A187219, A207378, A237593, A336812, A338156, A339278, A340061.
%K nonn,tabf
%O 1,2
%A _Omar E. Pol_, Feb 04 2021