Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #24 Jan 15 2024 12:53:41
%S 1,2,10,59,362,2287,14719,95965,631714,4189334,27946335,187319827,
%T 1260570515,8511460908,57634550179,391232510284,2661483301282,
%U 18140003082945,123846214549072,846801764644618,5797865791444367,39745254613927264,272762265331208465
%N Number of colored integer partitions of 2n such that all colors from an n-set are used.
%H Alois P. Heinz, <a href="/A340987/b340987.txt">Table of n, a(n) for n = 0..1183</a>
%F a(n) = [x^(2n)] (-1 + Product_{j>0} 1/(1-x^j))^n.
%F a(n) = A060642(2*n,n).
%F a(n) = Sum_{i=0..n} (-1)^i * C(n,i) * A144064(2n,n-i).
%F a(n) ~ c * d^n / sqrt(n), where d = 7.0224714601856191637116674203375767768930294104680988528373522936595686998... and c = 0.306577097117652483059452115503859901867921865482563952948772592499558... - _Vaclav Kotesovec_, Feb 14 2021
%e a(1) = 2: 2a, 1a1a.
%e a(2) = 10: 3a1b, 3b1a, 2a2b, 2a1b1b, 2b1a1a, 2a1a1b, 2b1a1b, 1a1b1b1b, 1a1a1b1b, 1a1a1a1b.
%p b:= proc(n, k) option remember; `if`(k<2, combinat[numbpart](n+1),
%p (q-> add(b(j, q)*b(n-j, k-q), j=0..n))(iquo(k, 2)))
%p end:
%p a:= n-> b(n$2):
%p seq(a(n), n=0..25);
%t b[n_, k_] := b[n, k] = If[k<2, PartitionsP[n+1], With[{q = Quotient[k, 2]}, Sum[b[j, q] b[n-j, k-q], {j, 0, n}]]];
%t a[n_] := b[n, n];
%t a /@ Range[0, 25] (* _Jean-François Alcover_, Feb 04 2021, after _Alois P. Heinz_ *)
%t Table[SeriesCoefficient[(-1 + 1/QPochhammer[Sqrt[x]])^n, {x, 0, n}], {n, 0, 25}] (* _Vaclav Kotesovec_, Jan 15 2024 *)
%t (* Calculation of constant d: *) 1/r/.FindRoot[{1 + s == 1/QPochhammer[Sqrt[r*s]], 1/(1 + s) + Sqrt[r]*(1 + s)*Derivative[0, 1][QPochhammer][Sqrt[r*s], Sqrt[r*s]] / (2*Sqrt[s]) == (Log[1 - Sqrt[r*s]] + QPolyGamma[0, 1, Sqrt[r*s]]) / (s*Log[r*s])}, {r, 1/7}, {s, 1}, WorkingPrecision -> 120] (* _Vaclav Kotesovec_, Jan 15 2024 *)
%Y Cf. A000041, A060642, A144064, A324595.
%K nonn
%O 0,2
%A _Alois P. Heinz_, Feb 01 2021