login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A340943
G.f. A(x) satisfies: Sum_{n>=0} x^n*A(x)^(4*n)/(1 - x*A(x)^n) = Sum_{n>=0} x^n*A(x)^n/(1 - x*A(x)^(4*n+3)).
5
1, 1, 5, 45, 482, 5665, 70725, 921174, 12379878, 170435921, 2391736448, 34089385297, 492181254691, 7183748957321, 105830560089572, 1571662656809121, 23504719106546214, 353701665355036178, 5351873694519004045, 81378581395212130011
OFFSET
0,3
COMMENTS
Equals row k = 4 of rectangular table A340940.
FORMULA
Given g.f. A(x), the following sums are all equal:
(1) B(x) = Sum_{n>=0} x^n*A(x)^(4*n)/(1 - x*A(x)^n),
(2) B(x) = Sum_{n>=0} x^n*A(x)^(3*n)/(1 - x*A(x)^(4*n+1)),
(3) B(x) = Sum_{n>=0} x^n*A(x)^n/(1 - x*A(x)^(4*n+3)),
(4) B(x) = Sum_{n>=0} x^n/(1 - x*A(x)^(n+4)),
(5) B(x) = Sum_{n>=0} x^(2*n) * A(x)^(n^2+4*n) * (1 - x^2*A(x)^(2*n+4)) / ((1 - x*A(x)^n)*(1 - x*A(x)^(n+4))),
(6) B(x) = Sum_{n>=0} x^(2*n) * A(x)^(4*n^2+4*n) * (1 - x^2*A(x)^(8*n+4)) / ((1 - x*A(x)^(4*n+1))*(1 - x*A(x)^(4*n+3)));
see the example section for the value of B(x).
EXAMPLE
G.f.: A(x) = 1 + x + 5*x^2 + 45*x^3 + 482*x^4 + 5665*x^5 + 70725*x^6 + 921174*x^7 + 12379878*x^8 + 170435921*x^9 + 2391736448*x^10 + ...
such that
B(x) = 1/(1-x) + x*A(x)^4/(1 - x*A(x)) + x^2*A(x)^8/(1 - x*A(x)^2) + x^3*A(x)^12/(1 - x*A(x)^3) + x^4*A(x)^16/(1 - x*A(x)^4) + ...
and
B(x) = 1/(1 - x*A(x)) + x*A(x)^3/(1 - x*A(x)^5) + x^2*A(x)^6/(1 - x*A(x)^9) + x^3*A(x)^9/(1 - x*A(x)^13) + x^4*A(x)^12/(1 - x*A(x)^17) + ...
also
B(x) = 1/(1 - x*A(x)^3) + x*A(x)/(1 - x*A(x)^7) + x^2*A(x)^2/(1 - x*A(x)^11) + x^3*A(x)^3/(1 - x*A(x)^15) + x^4*A(x)^4/(1 - x*A(x)^19) + ...
further,
B(x) = 1/(1 - x*A(x)^4) + x/(1 - x*A(x)^5) + x^2/(1 - x*A(x)^6) + x^3/(1 - x*A(x)^7) + x^4/(1 - x*A(x)^8) + ...
where
B(x) = 1 + 2*x + 7*x^2 + 43*x^3 + 380*x^4 + 4032*x^5 + 47234*x^6 + 588683*x^7 + 7657593*x^8 + 102796547*x^9 + 1413743374*x^10 + ...
PROG
(PARI) {a(n) = my(A=[1, 1]); for(i=1, n, A=concat(A, 0); H=A; A=concat(A, 0);
H[#A-1] = -polcoeff( sum(m=0, #A, x^m/(1 - x*Ser(A)^(m+4)) ) - sum(m=0, #A, x^m*Ser(A)^m/(1 - x*Ser(A)^(4*m+3)) ), #A)/3; A=H); A[n+1] }
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Feb 04 2021
STATUS
approved