Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #27 Mar 08 2021 12:06:06
%S 1,1,1,3,10,36,137,545,2244,9500,41151,181736,816085,3718508,17165117,
%T 80172679,378513020,1804991424,8688578508,42199027520,206723209249,
%U 1021191612686,5086213545738,25540278088827,129302804317291,660055084179260,3397896035465901
%N G.f. A(x) satisfies: A(x) = (A(x) - x)*(1 - x*A(x)) * Sum_{n>=0} x^n/(1 - x*A(x)^n).
%C Equals row k = 0 of rectangular table A340940.
%F G.f. A(x) satisfies:
%F (1) Sum_{n>=0} x^n/(1 - x*A(x)^n) = A(x)/((A(x) - x)*(1 - x*A(x))).
%F (2) Sum_{n>=0} x^(2*n) * A(x)^(n^2) * (1 + x*A(x)^n) / (1 - x*A(x)^n)) = A(x)/((A(x) - x)*(1 - x*A(x))).
%e G.f. A(x) = 1 + x + x^2 + 3*x^3 + 10*x^4 + 36*x^5 + 137*x^6 + 545*x^7 + 2244*x^8 + 9500*x^9 + 41151*x^10 + 181736*x^11 + 816085*x^12 + ...
%e such that
%e A(x)/((A(x) - x)*(1 - x*A(x))) = 1/(1-x) + x/(1 - x*A(x)) + x^2/(1 - x*A(x)^2) + x^3/(1 - x*A(x)^3) + x^4/(1 - x*A(x)^4) + x^5/(1 - x*A(x)^5) + ...
%e also
%e A(x)/((A(x) - x)*(1 - x*A(x))) = (1+x)/(1-x) + x^2*A(x)*(1 + x*A(x))/(1 - x*A(x)) + x^4*A(x)^4*(1 + x*A(x)^2)/(1 - x*A(x)^2) + x^6*A(x)^9*(1 + x*A(x)^3)/(1 - x*A(x)^3) + x^8*A(x)^16*(1 + x*A(x)^4)/(1 - x*A(x)^4) + ...
%e where
%e A(x)/((A(x) - x)*(1 - x*A(x))) = 1 + 2*x + 3*x^2 + 5*x^3 + 10*x^4 + 25*x^5 + 75*x^6 + 255*x^7 + 940*x^8 + 3660*x^9 + 14827*x^10 + 61927*x^11 + ...
%e GENERATING METHOD.
%e Note that iteration of the following equation does not converge to the g.f. A(x): A(x) = (A(x) - x)*(1 - x*A(x)) * Sum_{n>=0} x^n/(1 - x*A(x)^n); however, the coefficients of A(x) may be determined by the method described below.
%e Let P(x) be a partial sum of the power series A(x), then the next term in the series can be determined as follows.
%e (1) Start with P(x) = 1 + x, then the coefficient a(2)=1 of x^2 in A(x) appears as the coefficient of x^4 in (P(x)-x)*(1-x*P(x))*Sum_{n=0..4} x^n/(1 - x*P(x)^n) = 1 + x + 0*x^2 + 0*x^3 + 1*x^4 + ...
%e (2) Set P(x) = 1 + x + x^2, then the coefficient a(3)=3 of x^3 in A(x) appears as the coefficient of x^5 in (P(x)-x)*(1-x*P(x))*Sum_{n=0..5} x^n/(1 - x*P(x)^n) = 1 + x + x^2 + 0*x^3 + 0*x^4 + 3*x^5 + ...
%e (3) Set P(x) = 1 + x + x^2 + 3*x^3, then the coefficient a(4)=10 of x^4 in A(x) appears as the coefficient of x^6 in (P(x)-x)*(1-x*P(x))*Sum_{n=0..6} x^n/(1 - x*P(x)^n) = 1 + x + x^2 + 3*x^3 + 0*x^4 + 0*x^5 + 10*x^6 + ...
%e (4) Set P(x) = 1 + x + x^2 + 3*x^3 + 10*x^4, then the coefficient a(5)=36 of x^5 in A(x) appears as the coefficient of x^7 in (P(x)-x)*(1-x*P(x))*Sum_{n=0..7} x^n/(1 - x*P(x)^n) = 1 + x + x^2 + 3*x^3 + 10*x^4 + 0*x^5 + 0*x^6 + 36*x^7 + ...
%e Continue in this way to uniquely determine all the coefficients in g.f. A(x).
%o (PARI) {a(n) = my(A=1+x +x^3*O(x^n),H=A);
%o for(k=1, n, A = (A-x)*(1-x*A) * sum(m=0, n+3, x^m / (1 - x*A^m +x^3*O(x^n)) );
%o A = truncate( H + polcoeff(A, k+2)*x^k ) +x^3*O(x^n); H=A);polcoeff(A,n)}
%o for(n=0, 30, print1(a(n), ", "))
%Y Cf. A340940, A340942, A340894, A340895..
%K nonn
%O 0,4
%A _Paul D. Hanna_, Feb 03 2021