OFFSET
0,3
LINKS
Rémy Sigrist, Table of n, a(n) for n = 0..10000
Hongjian Li, Pingzhi Yuan, and Hairong Bai, Positive Rational Numbers of the Form phi(n^2)/phi(m^2), The American Mathematical Monthly, 128:2 (2021), 174-176.
Rémy Sigrist, PARI program for A340922
EXAMPLE
n 0 1 2 3 4 5 6 7 8 9 10
j/k 1 1/2 2 1/3 3 2/3 3/2 1/4 4 3/4 4/3
phi(j^2)/phi(k^2) 1 1/2 2 1/6 6 1/3 3 1/8 8 3/4 4/3
a(n) 0 1 2 19 20 3 4 35 36 9 10
.
n 11 12 13 14 15 16 17 18 19 20
j/k 1/5 5 2/5 5/2 3/5 5/3 4/5 5/4 1/6 6
phi(j^2)/phi(k^2) 1/20 20 1/10 10 3/10 10/3 2/5 5/2 1/12 12
a(n) 239 240 55 56 57 58 13 14 83 84
PROG
(PARI) \\ It is assumed that a38568 and a38569 are available as vectors,
\\ e.g. from the corresponding b-files.
\\ a38568=readvec("[path] a38568"); a38569=readvec("[path] a38569");
findinlist(n, d)={my(num=numerator(n/d), den=denominator(n/d)); for(k=1, #a38568, if(num==a38568[k]&&den==a38569[k], return(k))); 0};
for(k=1, 60, my(m=a38568[k], n=a38569[k], num=eulerphi(m^2), den=eulerphi(n^2)); print1(findinlist(num, den)-1, ", "))
(Julia)
using Nemo
function A340922List(len)
num(a) = euler_phi(numerator(a)^2)
den(a) = euler_phi(denominator(a)^2)
a, q, A, R = QQ(0), QQ(0), [], Int[]
for n in 1:len
q = next_minimal(q)
x = num(q)//den(q)
while true
i = findfirst(isequal(x), A)
if i == nothing
a = next_minimal(a)
push!(A, a)
else
push!(R, i - 1)
break
end
end
end
R
end
A340922List(59) |> println # Peter Luschny, Feb 19 2021
CROSSREFS
KEYWORD
nonn
AUTHOR
Hugo Pfoertner, Feb 19 2021
STATUS
approved