The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A340893 G.f. A(x) satisfies: A(x) = (1 - x*A(x)) * Sum_{n>=0} x^n / (1 - x*A(x)^(2*n+1)). 0
 1, 1, 1, 3, 12, 51, 229, 1079, 5288, 26768, 139255, 741804, 4035428, 22374787, 126262588, 724423620, 4222889705, 24999907277, 150274982778, 917156371139, 5684147494421, 35782117189675, 228878225147773, 1488242327844714, 9842110656790201 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 LINKS Table of n, a(n) for n=0..24. FORMULA G.f. A(x) satisfies: (1) A(x) = (1 - x*A(x)) * Sum_{n>=0} x^n / (1 - x*A(x)^(2*n+1)). (2) A(x) = (1 - x*A(x)) * Sum_{n>=0} x^n*A(x)^n / (1 - x*A(x)^(2*n)). EXAMPLE G.f.: A(x) = 1 + x + x^2 + 3*x^3 + 12*x^4 + 51*x^5 + 229*x^6 + 1079*x^7 + 5288*x^8 + 26768*x^9 + 139255*x^10 + 741804*x^11 + 4035428*x^12 + ... where A(x)/(1 - x*A(x)) = 1/(1 - x*A(x)) + x/(1 - x*A(x)^3) + x^2/(1 - x*A(x)^5) + x^3/(1 - x*A(x)^7) + x^4/(1 - x*A(x)^9) + ... also A(x)/(1 - x*A(x)) = 1/(1-x) + x*A(x)/(1 - x*A(x)^2) + x^2*A(x)^2/(1 - x*A(x)^4) + x^3*A(x)^3/(1 - x*A(x)^6) + x^4*A(x)^4/(1 - x*A(x)^8) + ... PROG (PARI) {a(n) = my(A=1); for(i=1, n, A = (1-x*A) * sum(m=0, n, x^m / (1 - x*A^(2*m+1) +x*O(x^n)) ) ); polcoeff(H=A, n)} for(n=0, 30, print1(a(n), ", ")) (PARI) {a(n) = my(A=1); for(i=1, n, A = (1-x*A) * sum(m=0, n, x^m*A^m / (1 - x*A^(2*m) +x*O(x^n)) ) ); polcoeff(H=A, n)} for(n=0, 30, print1(a(n), ", ")) CROSSREFS Cf. A340361, A340891, A340892. Sequence in context: A151185 A151186 A151187 * A151188 A151189 A199875 Adjacent sequences: A340890 A340891 A340892 * A340894 A340895 A340896 KEYWORD nonn AUTHOR Paul D. Hanna, Jan 25 2021 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 18 20:01 EDT 2024. Contains 373486 sequences. (Running on oeis4.)