The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A340893 G.f. A(x) satisfies: A(x) = (1 - x*A(x)) * Sum_{n>=0} x^n / (1 - x*A(x)^(2*n+1)). 0
1, 1, 1, 3, 12, 51, 229, 1079, 5288, 26768, 139255, 741804, 4035428, 22374787, 126262588, 724423620, 4222889705, 24999907277, 150274982778, 917156371139, 5684147494421, 35782117189675, 228878225147773, 1488242327844714, 9842110656790201 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,4
LINKS
FORMULA
G.f. A(x) satisfies:
(1) A(x) = (1 - x*A(x)) * Sum_{n>=0} x^n / (1 - x*A(x)^(2*n+1)).
(2) A(x) = (1 - x*A(x)) * Sum_{n>=0} x^n*A(x)^n / (1 - x*A(x)^(2*n)).
EXAMPLE
G.f.: A(x) = 1 + x + x^2 + 3*x^3 + 12*x^4 + 51*x^5 + 229*x^6 + 1079*x^7 + 5288*x^8 + 26768*x^9 + 139255*x^10 + 741804*x^11 + 4035428*x^12 + ...
where
A(x)/(1 - x*A(x)) = 1/(1 - x*A(x)) + x/(1 - x*A(x)^3) + x^2/(1 - x*A(x)^5) + x^3/(1 - x*A(x)^7) + x^4/(1 - x*A(x)^9) + ...
also
A(x)/(1 - x*A(x)) = 1/(1-x) + x*A(x)/(1 - x*A(x)^2) + x^2*A(x)^2/(1 - x*A(x)^4) + x^3*A(x)^3/(1 - x*A(x)^6) + x^4*A(x)^4/(1 - x*A(x)^8) + ...
PROG
(PARI) {a(n) = my(A=1); for(i=1, n, A = (1-x*A) * sum(m=0, n, x^m / (1 - x*A^(2*m+1) +x*O(x^n)) ) ); polcoeff(H=A, n)}
for(n=0, 30, print1(a(n), ", "))
(PARI) {a(n) = my(A=1); for(i=1, n, A = (1-x*A) * sum(m=0, n, x^m*A^m / (1 - x*A^(2*m) +x*O(x^n)) ) ); polcoeff(H=A, n)}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
Sequence in context: A151185 A151186 A151187 * A151188 A151189 A199875
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jan 25 2021
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 18 20:01 EDT 2024. Contains 373486 sequences. (Running on oeis4.)