login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

a(0) = 1; a(n) = Sum_{k=0..n-1} binomial(n,k)^2 * 2^(n-k-1) * a(k).
2

%I #5 Jan 25 2021 19:04:48

%S 1,1,6,76,1720,60816,3096384,214579296,19422473088,2224980891904,

%T 314675568756736,53849929134122496,10966912240761425920,

%U 2621246193301011159040,726608751113679704248320,231217063994112487051984896,83713709650818121936828858368

%N a(0) = 1; a(n) = Sum_{k=0..n-1} binomial(n,k)^2 * 2^(n-k-1) * a(k).

%F Sum_{n>=0} a(n) * x^n / (n!)^2 = 2 / (3 - BesselI(0,2*sqrt(2*x))).

%t a[0] = 1; a[n_] := a[n] = Sum[Binomial[n, k]^2 2^(n - k - 1) a[k], {k, 0, n - 1}]; Table[a[n], {n, 0, 16}]

%t nmax = 16; CoefficientList[Series[2/(3 - BesselI[0, 2 Sqrt[2 x]]), {x, 0, nmax}], x] Range[0, nmax]!^2

%Y Cf. A102221, A122704, A340887, A340888.

%K nonn

%O 0,3

%A _Ilya Gutkovskiy_, Jan 25 2021