%I #35 Mar 21 2024 08:35:05
%S 0,2,10,36,114,332,916,2428,6242,15652,38460,92916,221256,520332,
%T 1210448,2789100,6372498,14450420,32547188,72861376,162211196,
%U 359318644,792287340,1739623672,3804904316,8292351960,18012452664,39006099616,84226667004,181387693028,389657293304
%N Sum of subword complexity (number of nonempty distinct subwords) of all binary strings of length n.
%C a(n)/(2^n) is the expected subword complexity of a random binary string of length n.
%C All terms are even.
%H Shiyao Guo, <a href="/A340885/b340885.txt">Table of n, a(n) for n = 0..60</a>
%H Shiyao Guo, <a href="https://gist.github.com/Mivik/15fd4b903007fc25a9cd866e27337ca3">C++ program used to compute values for n up to 60</a>
%e For n = 2 there are four possible binary strings: "aa", "ab", "ba", "bb", and their subword complexities are 2, 3, 3 and 2 respectively, and their sum = a(2) = 10.
%o (C++) // see link above
%Y Cf. A282949 (distinct complexity profiles), A094913 (maximum complexity), A134457 (numbers of strings achieving the maximum complexity).
%K nonn
%O 0,2
%A _Shiyao Guo_, Jan 25 2021