login
A340877
Numbers k such that A000217(k+2)^A000217(k+1) mod A000217(k) is a triangular number.
2
1, 2, 3, 4, 6, 7, 9, 13, 14, 18, 21, 26, 27, 44, 52, 54, 62, 70, 81, 84, 91, 125, 143, 154, 162, 164, 182, 215, 230, 243, 259, 284, 287, 403, 422, 434, 455, 476, 484, 486, 489, 494, 511, 559, 574, 583, 670, 719, 729, 741, 854, 910, 923, 962, 989, 1022, 1034, 1054, 1079, 1118, 1159, 1178, 1295
OFFSET
1,2
LINKS
EXAMPLE
a(5) = 6 is a term because A000217(6..8) are 21, 28, 36, 36^28 (mod 21) == 15, and 15 = A000217(5) is a triangular number.
MAPLE
tri:= n -> n*(n+1)/2:
istri:= x -> issqr(1+8*x):
select(t -> istri(tri(t+2) &^ tri(t+1) mod tri(t)), [$1..10000]);
PROG
(PARI) tri(n) = n*(n+1)/2; \\ A000217
isok(n) = ispolygonal(lift(Mod(tri(n+2), tri(n))^tri(n+1)), 3); \\ Michel Marcus, Jan 25 2021
CROSSREFS
Cf. A000217.
Sequence in context: A050050 A222801 A117307 * A161890 A089388 A055494
KEYWORD
nonn
AUTHOR
J. M. Bergot and Robert Israel, Jan 24 2021
STATUS
approved