login
Numbers k such that prime(k)^prime(k+1) == prime(k+2) (mod prime(k+3)).
1

%I #15 Jan 26 2021 10:52:22

%S 942,4658911,12806325,2515276754

%N Numbers k such that prime(k)^prime(k+1) == prime(k+2) (mod prime(k+3)).

%C Inspired by A340868 and the comment there.

%e The 942th to the 945th primes are 7433, 7451, 7457 and 7459. Since 7433^7451 == 7457 mod 7459, 942 is in the sequence.

%o (Python)

%o from sympy import nextprime

%o k,p,q,r,s,A340876_list = 1,2,3,5,7,[]

%o while k < 10**7:

%o if pow(p,q,s) == r:

%o A340876_list.append(k)

%o k,p,q,r,s = k+1,q,r,s,nextprime(s)

%Y Cf. A340868.

%K nonn,more

%O 1,1

%A _Chai Wah Wu_, Jan 24 2021

%E a(4) from _Daniel Suteu_, Jan 26 2021