%I #13 Apr 09 2021 09:41:15
%S 3,5,7,10,11,13,14,15,17,19,21,22,23,25,26,28,29,31,33,34,35,37,38,39,
%T 41,42,43,44,46,47,49,51,52,53,55,57,58,59,61,62,63,65,66,67,68,69,70,
%U 71,73,74,76,77,78,79,82,83,85,86,87,88,89,91,92,93,94,95
%N Heinz numbers of integer partitions of positive rank.
%C The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), giving a bijective correspondence between positive integers and integer partitions.
%C The Dyson rank of a nonempty partition is its maximum part minus its length. The rank of an empty partition is undefined.
%H Freeman J. Dyson, <a href="https://doi.org/10.1016/S0021-9800(69)80006-2">A new symmetry of partitions</a>, Journal of Combinatorial Theory 7.1 (1969): 56-61.
%H FindStat, <a href="http://www.findstat.org/StatisticsDatabase/St000145">St000145: The Dyson rank of a partition</a>
%F For all terms A061395(a(n)) > A001222(a(n)).
%e The sequence of partitions together with their Heinz numbers begins:
%e 3: (2) 28: (4,1,1) 49: (4,4) 69: (9,2)
%e 5: (3) 29: (10) 51: (7,2) 70: (4,3,1)
%e 7: (4) 31: (11) 52: (6,1,1) 71: (20)
%e 10: (3,1) 33: (5,2) 53: (16) 73: (21)
%e 11: (5) 34: (7,1) 55: (5,3) 74: (12,1)
%e 13: (6) 35: (4,3) 57: (8,2) 76: (8,1,1)
%e 14: (4,1) 37: (12) 58: (10,1) 77: (5,4)
%e 15: (3,2) 38: (8,1) 59: (17) 78: (6,2,1)
%e 17: (7) 39: (6,2) 61: (18) 79: (22)
%e 19: (8) 41: (13) 62: (11,1) 82: (13,1)
%e 21: (4,2) 42: (4,2,1) 63: (4,2,2) 83: (23)
%e 22: (5,1) 43: (14) 65: (6,3) 85: (7,3)
%e 23: (9) 44: (5,1,1) 66: (5,2,1) 86: (14,1)
%e 25: (3,3) 46: (9,1) 67: (19) 87: (10,2)
%e 26: (6,1) 47: (15) 68: (7,1,1) 88: (5,1,1,1)
%t Select[Range[2,100],PrimePi[FactorInteger[#][[-1,1]]]>PrimeOmega[#]&]
%Y Note: A-numbers of Heinz-number sequences are in parentheses below.
%Y These partitions are counted by A064173.
%Y The odd case is A101707 (A340604).
%Y The even case is A101708 (A340605).
%Y The negative version is (A340788).
%Y A001222 counts prime factors.
%Y A061395 selects the maximum prime index.
%Y A072233 counts partitions by sum and length.
%Y A168659 = partitions whose greatest part divides their length (A340609).
%Y A168659 = partitions whose length divides their greatest part (A340610).
%Y A200750 = partitions whose length and maximum are relatively prime.
%Y - Rank -
%Y A047993 counts partitions of rank 0 (A106529).
%Y A063995/A105806 count partitions by Dyson rank.
%Y A064174 counts partitions of nonnegative/nonpositive rank (A324562/A324521).
%Y A101198 counts partitions of rank 1 (A325233).
%Y A257541 gives the rank of the partition with Heinz number n.
%Y A324520 counts partitions with rank equal to least part (A324519).
%Y A340601 counts partitions of even rank (A340602), with strict case A117192.
%Y A340692 counts partitions of odd rank (A340603), with strict case A117193.
%Y Cf. A003114, A006141, A039900, A056239, A096401, A112798, A117409, A316413, A324517, A325134, A326845, A340828.
%K nonn
%O 1,1
%A _Gus Wiseman_, Jan 29 2021