OFFSET
0,2
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..2413
FORMULA
a(n) = A345123(2n,n).
a(n) ~ c * (27/4)^(n/2) / sqrt(3*Pi*n/2), where c = 14 if n is even and c = 8*sqrt(3) if n is odd. Equivalently, c = 7 + 4*sqrt(3) + (7 - 4*sqrt(3))*(-1)^n. - Vaclav Kotesovec, Jun 19 2021
EXAMPLE
a(3) = 17: [1,2,3], [1,2,5], [1,4,5], [2,3,4], [2,3,6], [2,5,6], [3,4,5], [4,5,6], [1,2,3,4], [1,2,3,6], [1,2,5,6], [1,4,5,6], [2,3,4,5], [3,4,5,6], [1,2,3,4,5], [2,3,4,5,6], [1,2,3,4,5,6].
MAPLE
g:= proc(n, k) option remember; `if`(k>n, 0,
`if`(k in [0, 1], n^k, g(n-1, k-1)+g(n-2, k)))
end:
b:= proc(n, k) option remember;
`if`(k>n, 0, g(n, k)+b(n, k+1))
end:
a:= n-> b(2*n, n):
seq(a(n), n=0..30);
MATHEMATICA
g[n_, k_] := g[n, k] = Which[k > n, 0, k == 0, 1, k == 1, n,
True, g[n - 1, k - 1] + g[n - 2, k]];
b[n_, k_] := b[n, k] = If[k > n, 0, g[n, k] + b[n, k + 1]];
a[n_] := b[2*n, n];
Table[a[n], {n, 0, 30}] (* Jean-François Alcover, May 29 2022, after Alois P. Heinz *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Jun 10 2021
STATUS
approved