Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #27 Nov 04 2023 12:32:06
%S 2,3,5,15,26,46,82,89,90,129,323,362,401,420,610,624,840,2024,2703,
%T 2808,6888,12099,15963,19320,24650,29930,33490,36482,39203,45795,
%U 47523,52440,66050,69168,83408,94248,94863,103683,114284,164399,185364,206442,222785,227530,229180
%N Numbers k such that the two perfect powers immediately adjacent to k^2 both have exponents greater than 2.
%C Within the range of the data, a(n)^2 = A340642(n), i.e., no 3 immediately consecutive perfect powers x^p1, y^p2, z^p3 with min (p1, p2, p3) > 2 are seen. Is there a counterexample?
%H David A. Corneth, <a href="/A340643/b340643.txt">Table of n, a(n) for n = 1..611</a> (first 181 terms from Hugo Pfoertner)
%o (PARI) a340643(limit)={my(p2=999, p1=2, n2=1, n1=4); for(n=5, limit, my(p0=ispower(n)); if(p0>1, if(issquare(n1)&p2>2&p0>2, print1(sqrtint(n1),", ")); n2=n1; n1=n; p2=p1; p1=p0))};
%o a340643(10^8)
%o (PARI) upto(n) = {n *= n; my(v = List(), res = List([2])); for(i = 2, sqrtnint(n, 3), for(e = 3, logint(n, i), listput(v, i^e) ); ); listsort(v, 1); for(i = 1, #v - 1, if(sqrtint(v[i]) + 1 == sqrtint(v[i+1]) - issquare(v[i+1]), listput(res, sqrtint(v[i+1]-issquare(v[i+1]))); ) ); res }
%Y Cf. A000290, A001597, A025479, A076467, A097054, A111245, A153158, A340642, A340700, A340701.
%K nonn
%O 1,1
%A _Hugo Pfoertner_, Jan 14 2021
%E More terms from _David A. Corneth_, Jan 14 2021