login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Decimal expansion of Product_{primes p == 5, 7, 11 (mod 12)} 1/(1 - 1/p^2).
2

%I #5 Jan 19 2021 13:17:16

%S 1,0,8,8,3,3,6,9,3,5,2,6,8,3,4,2,0,5,2,6,7,3,5,7,7,5,0,5,9,5,7,0,2,5,

%T 0,6,9,9,8,1,3,4,0,8,6,6,9,6,2,1,7,5,2,8,4,3,5,4,2,8,0,2,1,6,2,8,4,5,

%U 0,4,9,7,5,1,5,0,2,7,0,7,2,8,2,7,5,5

%N Decimal expansion of Product_{primes p == 5, 7, 11 (mod 12)} 1/(1 - 1/p^2).

%H Salma Ettahri, Olivier Ramaré, and Léon Surel, <a href="https://arxiv.org/abs/1908.06808">Fast multi-precision computation of some Euler products</a>, arXiv:1908.06808 [math.NT], 2019.

%H Étienne Fouvry, Claude Levesque, and Michel Waldschmidt, <a href="http://arxiv.org/abs/1712.09019">Representation of integers by cyclotomic binary forms</a>, arXiv:1712.09019 [math.NT], 2017 and <a href="https://doi.org/10.4064/aa171012-24-12">Acta Arithmetica</a>, online 15 March 2018.

%F A340552^(1/2) = A301430 / (3^(1/4)*Pi^(1/2)*log(2+sqrt(3))^(1/4)/(2^(5/4)* Gamma(1/4))), see É. Fouvry et al.

%e 1.0883369352683420526735775059570250699813408669621752843542802162845...

%t (* Using Vaclav Kotesovec's function Z from A301430. *)

%t $MaxExtraPrecision = 1000; digits = 90;

%t digitize[c_] := RealDigits[Chop[N[c, digits]], 10, digits - 1][[1]];

%t digitize[Z[12, 5, 2] Z[12, 7, 2] Z[12, 11, 2]]

%Y A301430.

%K nonn,cons

%O 0,3

%A _Peter Luschny_, Jan 19 2021