%I #14 May 29 2023 01:47:30
%S 6,5,1,4,9,6,1,2,9,4,7,2,3,1,8,7,9,8,0,4,3,2,7,9,2,9,5,1,0,8,0,0,7,3,
%T 3,5,0,1,8,4,7,6,9,2,6,7,6,3,0,4,1,5,2,9,4,0,6,7,8,8,5,1,5,4,8,8,1,0,
%U 2,9,6,3,5,8,4,5,4,1,4,3,8,9,6,0,2,6,4
%N Decimal expansion of log(Pi/2)/log(2).
%C Probability of a coefficient in the continued fraction being odd, where the continued fraction coefficients satisfy the Gauss-Kuzmin distribution.
%H V. N. Nolte, <a href="https://doi.org/10.1016/0019-3577(90)90025-I">Some probabilistic results on the convergents of continued fractions</a>, Indagationes Mathematicae, Vol. 1, No. 3 (1990), pp. 381-389.
%F Equals A216582 - 1.
%F Equals log_2(A019669).
%F Equals Sum_{k >= 0} -log_2(1-1/(2*k+2)^2).
%F Equals 1-A340533.
%e 0.65149612947231879804327929510800733501847692676304...
%t RealDigits[Log2[Pi/2], 10, 120][[1]] (* _Amiram Eldar_, May 29 2023 *)
%o (PARI) log(Pi/2)/log(2)
%Y Cf. A019669. Essentially the same as A216582.
%Y Cf. A340533.
%K nonn,cons
%O 0,1
%A _A.H.M. Smeets_, Jan 11 2021