login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Irregular triangle read by rows T(n,k) in which row n has length A000041(n-1) and every column k is A024916, n >= 1, k >= 1.
6

%I #72 Mar 09 2022 01:15:36

%S 1,4,8,1,15,4,1,21,8,4,1,1,33,15,8,4,4,1,1,41,21,15,8,8,4,4,1,1,1,1,

%T 56,33,21,15,15,8,8,4,4,4,4,1,1,1,1,69,41,33,21,21,15,15,8,8,8,8,4,4,

%U 4,4,1,1,1,1,1,1,1,87,56,41,33,33,21,21,15,15,15,15,8,8,8,8

%N Irregular triangle read by rows T(n,k) in which row n has length A000041(n-1) and every column k is A024916, n >= 1, k >= 1.

%C T(n,k) is the number of cubic cells (or cubes) in the k-th level starting from the base of the tower described in A221529 whose largest side of the base is equal to n (see example). - _Omar E. Pol_, Jan 08 2022

%F T(n,k) = A024916(A336811(n,k)).

%F T(n,k) = Sum_{j=1..n} A339278(j,k). - _Omar E. Pol_, Jan 08 2022

%e Triangle begins:

%e 1;

%e 4;

%e 8, 1;

%e 15, 4, 1;

%e 21, 8, 4, 1, 1;

%e 33, 15, 8, 4, 4, 1, 1;

%e 41, 21, 15, 8, 8, 4, 4, 1, 1, 1, 1;

%e 56, 33, 21, 15, 15, 8, 8, 4, 4, 4, 4, 1, 1, 1, 1;

%e 69, 41, 33, 21, 21, 15, 15, 8, 8, 8, 8, 4, 4, 4, 4, 1, 1, 1, 1, 1, 1, 1;

%e ...

%e For n = 9 the length of row 9 is A000041(9-1) = 22.

%e From _Omar E. Pol_, Jan 08 2022: (Start)

%e For n = 9 the lateral view and top view of the tower described in A221529 look like as shown below:

%e _

%e 22 1 | |

%e 21 1 | |

%e 20 1 | |

%e 19 1 | |

%e 18 1 | |

%e 17 1 | |

%e 16 1 |_|_

%e 15 4 | |

%e 14 4 | |

%e 13 4 | |

%e 12 4 |_ _|_

%e 11 8 | | |

%e 10 8 | | |

%e 9 8 | | |

%e 8 8 |_ _|_|_

%e 7 15 | | |

%e 6 15 |_ _ _| |_

%e 5 21 | | |

%e 4 21 |_ _ _|_ _|_

%e 3 33 |_ _ _ _| | |_

%e 2 41 |_ _ _ _|_|_ _|_ _

%e 1 69 |_ _ _ _ _|_ _|_ _|

%e .

%e Level Row 9 Lateral view

%e k T(9,k) of the tower

%e .

%e _ _ _ _ _ _ _ _ _

%e |_| | | | | | | |

%e |_ _|_| | | | | |

%e |_ _| _|_| | | |

%e |_ _ _| _|_| |

%e |_ _ _| _| _ _|

%e |_ _ _ _| |

%e |_ _ _ _| _ _|

%e | |

%e |_ _ _ _ _|

%e .

%e Top view

%e of the tower

%e .

%e For n = 9 and k = 1 there are 69 cubic cells in the level 1 starting from the base of the tower, so T(9,1) = 69.

%e For n = 9 and k = 22 there is only one cubic cell in the level 22 (the top) of the tower, so T(9,22) = 1.

%e The volume of the tower (also the total number of cubic cells) represents the 9th term of the convolution of A000203 and A000041 hence it's equal to A066186(9) = 270, equaling the sum of the 9th row of triangle. (End)

%o (PARI) f(n) = numbpart(n-1);

%o T(n, k) = {if (k > f(n), error("invalid k")); if (k==1, return (n)); my(s=0); while (k <= f(n-1), s++; n--; ); 1+s; } \\ A336811

%o g(n) = sum(k=1, n, n\k*k); \\ A024916

%o row(n) = vector(f(n), k, g(T(n,k))); \\ _Michel Marcus_, Jan 22 2022

%Y Row sums give A066186.

%Y Row lengths give A000041.

%Y The length of the m-th block in row n is A187219(m), m >= 1.

%Y Cf. A350637 (analog for the stepped pyramid described in A245092).

%Y Cf. A000203, A024916, A196020, A221529, A236104, A235791, A237270, A237271, A237593, A339278, A262626, A336811, A338156, A340035, A341149, A346533, A350333.

%K nonn,tabf

%O 1,2

%A _Omar E. Pol_, Jan 07 2021