%I #13 Jan 07 2021 10:31:17
%S 0,1,1,2,2,3,3,4,4,3,3,4,4,5,5,6,6,5,5,6,6,7,7,8,8,9,9,10,10,9,9,10,
%T 10,11,11,12,12,13,13,12,12,11,11,10,10,9,9,10,10,9,9,10,10,11,11,12,
%U 12,13,13,12,12,13,13,14,14,15,15,14,14,15,15,16,16
%N a(n) is the X-coordinate of the n-th point of a variant of the quadratic Koch curve. Sequence A340321 gives Y-coordinates.
%C The curve is built by successively applying the following substitution to an initial vector (1, 0) (the two vertical copies are horizontally flipped):
%C *
%C .------>.
%C ^ |
%C |* *|
%C * | v *
%C .------>. .------>.
%C The quadratic Koch curve is built without horizontal flip.
%H Rémy Sigrist, <a href="/A340320/b340320.txt">Table of n, a(n) for n = 0..3125</a>
%H Robert Ferréol (MathCurve), <a href="https://www.mathcurve.com/fractals/kochquadratique/kochquadratique.shtml">Courbe de Koch quadratique</a> [in French]
%H Rémy Sigrist, <a href="/A340320/a340320.png">Line plot of the first 1+5^5 points</a>
%H Rémy Sigrist, <a href="/A340320/a340320.gp.txt">PARI program for A340320</a>
%H <a href="/index/Con#coordinates_2D_curves">Index entries for sequences related to coordinates of 2D curves</a>
%e The curve starts as follows:
%e +---+
%e |12 |13
%e | |
%e +---+ +---+
%e |10 11 14 |15
%e | |
%e +---+ +---+
%e 9 |8 |17 16
%e | |
%e +---+ +---+ +---+ +---+
%e |2 |3 |6 7 18 |19 |22 |23
%e | | | | | |
%e +---+ +---+ +---+ +---+
%e 0 1 4 5 20 21 24 25
%e - so a(0) = 0,
%e a(5) = a(6) = a(9) = a(10) = 3.
%o (PARI) See Links section.
%Y See A332249 and A340327 for similar sequences.
%Y Cf. A340321 (Y-coordinates).
%K nonn
%O 0,4
%A _Rémy Sigrist_, Jan 04 2021