login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A340296
a(n) is the first number whose digit sequence can be partitioned into primes in exactly n ways.
1
2, 23, 223, 373, 2237, 2337, 19373, 22337, 22373, 23773, 31373, 23373, 37337, 223737, 223773, 223373, 233137, 233373, 237337, 1137337, 1937337, 1373373, 2233733, 2233137, 373373, 2233373, 2337313, 2237337, 2237373, 2337353, 3733313, 2331373, 3137337, 3137373, 3373373, 2337373, 2337337, 2373373
OFFSET
1,1
LINKS
EXAMPLE
For n=4, a(4) = 373 can be partitioned into primes in four ways: 3|7|3, 3|73, 37|3 and 373.
MAPLE
f:= proc(n) option remember; local i, t;
if isprime(n) then t:= 1 else t:= 0 fi;
for i from 1 to ilog10(n) do
if isprime(n mod 10^i) then t:= t + procname(floor(n/10^i)) fi
od;
t
end proc:
f(0):= 0:
V:= Vector(38):
for n from 2 to 10^7 do
v:= f(n);
if v > 0 and v <= 38 and V[v] = 0 then V[v]:= n fi
od:
convert(V, list);
CROSSREFS
Sequence in context: A069590 A024028 A288820 * A242904 A068167 A030456
KEYWORD
nonn,base
AUTHOR
J. M. Bergot and Robert Israel, Jan 14 2021
STATUS
approved