login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Odd composite integers m such that A054413(3*m-J(m,53)) == 7 (mod m), where J(m,53) is the Jacobi symbol.
3

%I #8 Jan 04 2021 06:29:51

%S 9,25,27,51,91,105,153,185,225,289,325,425,459,481,513,747,867,897,

%T 925,945,1001,1189,1299,1469,1633,1785,1921,2241,2245,2599,2601,2651,

%U 2769,2907,3051,3277,3825,3897,5681,6225,6507,6777,7225,7361,7803,8023,8227,8701,8721

%N Odd composite integers m such that A054413(3*m-J(m,53)) == 7 (mod m), where J(m,53) is the Jacobi symbol.

%C The generalized Lucas sequences of integer parameters (a,b) defined by U(m+2)=a*U(m+1)-b*U(m) and U(0)=0, U(1)=1, satisfy U(3*p-J(p,D)) == a (mod p) whenever p is prime, k is a positive integer, b=-1 and D=a^2+4.

%C The composite integers m with the property U(k*m-J(m,D)) == U(k-1) (mod m) are called generalized Lucas pseudoprimes of level k- and parameter a.

%C Here b=-1, a=7, D=53 and k=3, while U(m) is A054413(m).

%D D. Andrica, O. Bagdasar, Recurrent Sequences: Key Results, Applications and Problems. Springer, 2020.

%D D. Andrica, O. Bagdasar, On some new arithmetic properties of the generalized Lucas sequences, Mediterr. J. Math. (to appear, 2021).

%D D. Andrica, O. Bagdasar, On generalized pseudoprimality of level k (submitted).

%H Dorin Andrica, Vlad Crişan, and Fawzi Al-Thukair, <a href="https://doi.org/10.1016/j.ajmsc.2017.06.002">On Fibonacci and Lucas sequences modulo a prime and primality testing</a>, Arab Journal of Mathematical Sciences, 2018, 24(1), 9--15.

%t Select[Range[3, 10000, 2], CoprimeQ[#, 53] && CompositeQ[#] && Divisible[Fibonacci[3*#-JacobiSymbol[#, 53], 7] - 7, #] &]

%Y Cf. A054413, A071904, A340096 (a=7, b=-1, k=1), A340121 (a=7, b=-1, k=2).

%Y Cf. A340235 (a=1, b=-1, k=3), A340236 (a=3, b=-1, k=3), A340237 (a=5, b=-1, k=3).

%K nonn

%O 1,1

%A _Ovidiu Bagdasar_, Jan 01 2021