login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A340214
a(n) is the least m such that A340212(m) = 2*n.
3
3, 55, 4, 30, 37, 11, 25, 363, 31, 13, 312, 10, 78, 16, 67, 53, 243, 26, 35, 74, 39, 235, 709, 102, 224, 1192, 33, 207, 103, 94, 192, 940, 19, 833, 633, 99, 64, 680, 261, 434, 3994, 105, 743, 988, 68, 367, 168, 440, 177, 1874, 36, 567, 3810, 468, 250, 1006, 52, 226, 1514, 38, 1313, 3277, 160, 737
OFFSET
1,1
COMMENTS
2*n*prime(a(n))+prime(a(n)-1) and 2*n*prime(a(n))+prime(a(n)+1) are prime.
LINKS
EXAMPLE
For n=4, A340212(30)=8 and this is the first appearance of 8 in A340212, so a(4)=30.
MAPLE
V:= Vector(60): count:= 0:
q:= 3: r:= 5:
for i from 3 while count < 60 do
p:= q; q:= r; r:= nextprime(r);
for k from 2 by 2 do
if isprime(k*q+p) and isprime(k*q+r) then break fi;
od;
v:= k/2;
if v <= 60 and V[v] = 0 then count:= count+1; V[v]:= i; fi
od:
PROG
(PARI) f(n) = my(p=prime(n), k=1); while (! (isprime(k*p+precprime(p-1)) && isprime(k*p+nextprime(p+1))), k++); k; \\ A340212
a(n) = my(m=3); while (f(m) != 2*n, m++); m; \\ Michel Marcus, Jan 01 2021
CROSSREFS
Sequence in context: A334248 A193256 A319038 * A088278 A242199 A268661
KEYWORD
nonn
AUTHOR
J. M. Bergot and Robert Israel, Dec 31 2020
STATUS
approved