login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Decimal expansion of the constant kappa(-5) = (1/2)*sqrt(sqrt(5)*log(9+4*sqrt(5))/(3*Pi))*sqrt(A340794*A340665).
1

%I #53 Jan 27 2021 09:24:20

%S 5,1,5,9,3,9,4,8,2,2,7,9,6,5,3,4,8,4,9,5,3,1,2,5,0,1,3,9,4,0,5,5,6,3,

%T 7,2,6,9,8,1,0,9,9,9,2,4,6,8,6,8,1,4,7,4,8,5,8,7,1,7,9,6,2,5,2,2,7,4,

%U 4,9,7,1,7,6,1,9,5,7,7,2,2,7,6,1,1,9,4,3,1,3,1,6,2,6,5,8,8,9,8,3,0,3,6

%N Decimal expansion of the constant kappa(-5) = (1/2)*sqrt(sqrt(5)*log(9+4*sqrt(5))/(3*Pi))*sqrt(A340794*A340665).

%C For general definition of the constants kappa(n) see Steven Finch 2009 p. 7, for this particular case kappa(-5) see p. 11.

%H Steven Finch, <a href="https://arxiv.org/abs/0907.4894">Quartic and Octic Characters Modulo n</a>, arXiv:0907.4894 [math.NT], 2009 p. 7-11.

%F Equals exp(-gamma/2)*log((1+sqrt(5))/2)*sqrt(5/Pi)/(2*C(5,2)*C(5,3)), where C(5,2) and C(5,3) are Mertens constants see A340839.

%F Equals 2*A340866*exp(gamma/4)*((1/5)*log((1+sqrt(5))/2))^(3/4)/sqrt(A340004).

%F Equals 2*A340866*exp(gamma/4)*log((1+sqrt(5))/2)/(sqrt(5*Pi)*A340884^(1/4)).

%F Equals 2*A340839*A340866*exp(gamma/2)*log((1+sqrt(5))/2)/sqrt(5*Pi).

%F Equals sqrt((1/3)*Pi*log(9+4*sqrt(5)))/(sqrt(5^(3/2)*A340004*A340127)). [Finch 2009 p. 11]

%e 0.51593948227965348495312501394...

%Y Cf. A340004, A340127, A340665, A340794, A340839, A340866.

%K nonn,cons

%O 0,1

%A _Artur Jasinski_, Jan 26 2021