Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #43 Feb 28 2023 23:47:29
%S 1,1,15,2639,5100561,105518291153,23067254643457375,
%T 52901008815129395889375,1266973371422697144030728637409,
%U 315937379766837559600972497421046382689,818563964325891485548944567913851815851212484079
%N Number of spanning trees in the halved Aztec diamond HOD_n.
%C *
%C |
%C * *---*---*
%C | | | |
%C * *---*---* *---*---*---*---*
%C | | | | | | | | |
%C *---*---* *---*---*---*---* *---*---*---*---*---*---*
%C HOD_1 HOD_2 HOD_3
%C -------------------------------------------------------------
%C *
%C |
%C *---*---*
%C | | |
%C *---*---*---*---*
%C | | | | |
%C *---*---*---*---*---*---*
%C | | | | | | |
%C *---*---*---*---*---*---*---*---*
%C HOD_4
%H Seiichi Manyama, <a href="/A340185/b340185.txt">Table of n, a(n) for n = 0..40</a>
%H Mihai Ciucu, <a href="https://arxiv.org/abs/0710.4500">Symmetry classes of spanning trees of Aztec diamonds and perfect matchings of odd squares with a unit hole</a>, arXiv:0710.4500 [math.CO], 2007. See Corollary 3.7.
%F a(n) = Product_{1<=j<k<=2*n and j+k<=2*n} (4 - 4*cos(j*Pi/(2*n+1))*cos(k*Pi/(2*n+1))).
%F From _Seiichi Manyama_, Jan 02 2021: (Start)
%F a(n) = 4^((n-1)*n) * Product_{1<=j<k<=n} (1 - cos(j*Pi/(2*n+1))^2 * cos(k*Pi/(2*n+1))^2).
%F a(n) = A340052(n) * A065072(n) = (1/2^n) * sqrt(A127605(n) * A004003(n) / (2*n+1)). (End)
%F a(n) ~ sqrt(Gamma(1/4)) * exp(G*(2*n+1)^2/Pi) / (Pi^(3/8) * n^(3/4) * 2^(n + 3/4) * (1 + sqrt(2))^(n + 1/2)), where G is Catalan's constant A006752. - _Vaclav Kotesovec_, Jan 03 2021
%t Table[4^((n-1)*n) * Product[Product[(1 - Cos[j*Pi/(2*n + 1)]^2*Cos[k*Pi/(2*n + 1)]^2), {k, j+1, n}], {j, 1, n}], {n, 0, 12}] // Round (* _Vaclav Kotesovec_, Jan 03 2021 *)
%o (PARI) default(realprecision, 120);
%o {a(n) = round(prod(j=1, 2*n, prod(k=j+1, 2*n-j, 4-4*cos(j*Pi/(2*n+1))*cos(k*Pi/(2*n+1)))))}
%o (PARI) default(realprecision, 120);
%o {a(n) = round(4^((n-1)*n)*prod(j=1, n, prod(k=j+1, n, 1-(cos(j*Pi/(2*n+1))*cos(k*Pi/(2*n+1)))^2)))} \\ _Seiichi Manyama_, Jan 02 2021
%o (Python)
%o # Using graphillion
%o from graphillion import GraphSet
%o def make_HOD(n):
%o s = 1
%o grids = []
%o for i in range(2 * n + 1, 1, -2):
%o for j in range(i - 2):
%o a, b, c = s + j, s + j + 1, s + i + j
%o grids.extend([(a, b), (b, c)])
%o grids.append((s + i - 2, s + i - 1))
%o s += i
%o return grids
%o def A340185(n):
%o if n == 0: return 1
%o universe = make_HOD(n)
%o GraphSet.set_universe(universe)
%o spanning_trees = GraphSet.trees(is_spanning=True)
%o return spanning_trees.len()
%o print([A340185(n) for n in range(7)])
%Y Cf. A004003, A007725, A007726, A065072, A127605, A340052, A340176 (halved Aztec diamond HMD_n).
%K nonn
%O 0,3
%A _Seiichi Manyama_, Dec 31 2020