OFFSET
1,4
COMMENTS
For k>1, a(n) <= ceiling(2^(k-3)). This sequence refers to a conjecture, which is a generalization of a Question 723. (iii) from "Collected Papers", Srinivasa Ramanujan.
REFERENCES
Srinivasa Ramanujan, Collected Papers, Question 723 in p. 332, Providence RI: AMS / Chelsea (2000).
LINKS
B. C. Berndt, Y. S. Choi, and S. Y. Kang, The problems submitted by Ramanujan to the Journal of Indian Math. Soc., in: Continued fractions, Contemporary Math., 236 (1999), page 14 (see Q723, JIMS VII).
EXAMPLE
For n=6, a(6)=7, because for all m<7: m^(1/n)+(m+1)^(1/n) < (2^n*m+2^(n-1)-1)^(1/n) and for all m>=7: m^(1/n)+(m+1)^(1/n) >= (2^n*m+2^(n-1)-1)^(1/n).
PROG
(C++)
#include <iostream>
#include <math.h>
using namespace std; int main() {int n=1, k=1; long double a, b; for(n=1; n<18; n++){k=1; while(1) {a=pow(k, 1/(long double)n)+pow(k+1, 1/(long double)n); b=pow(pow(2, n)*k+pow(2, n-1)-1, 1/(long double)n); if(a>=b){cout<<k<<", "; break; } k++; }}}
CROSSREFS
KEYWORD
nonn,more
AUTHOR
Andrzej Kukla, Dec 30 2020
STATUS
approved