login
A340163
For n>=1, smallest integer k such that for all m>=k: m^(1/n)+(m+1)^(1/n) >= (2^n*m+2^(n-1)-1)^(1/n).
0
0, 0, 1, 2, 3, 7, 14, 28, 57, 115, 233, 469, 945, 1902, 3823, 7680, 15420, 30948, 62087, 124518, 249661, 500457, 1002986, 2009771, 4026532
OFFSET
1,4
COMMENTS
For k>1, a(n) <= ceiling(2^(k-3)). This sequence refers to a conjecture, which is a generalization of a Question 723. (iii) from "Collected Papers", Srinivasa Ramanujan.
REFERENCES
Srinivasa Ramanujan, Collected Papers, Question 723 in p. 332, Providence RI: AMS / Chelsea (2000).
EXAMPLE
For n=6, a(6)=7, because for all m<7: m^(1/n)+(m+1)^(1/n) < (2^n*m+2^(n-1)-1)^(1/n) and for all m>=7: m^(1/n)+(m+1)^(1/n) >= (2^n*m+2^(n-1)-1)^(1/n).
PROG
(C++)
#include <iostream>
#include <math.h>
using namespace std; int main() {int n=1, k=1; long double a, b; for(n=1; n<18; n++){k=1; while(1) {a=pow(k, 1/(long double)n)+pow(k+1, 1/(long double)n); b=pow(pow(2, n)*k+pow(2, n-1)-1, 1/(long double)n); if(a>=b){cout<<k<<", "; break; } k++; }}}
CROSSREFS
Sequence in context: A293326 A308092 A262765 * A131666 A135258 A034065
KEYWORD
nonn,more
AUTHOR
Andrzej Kukla, Dec 30 2020
STATUS
approved