login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Odd part of A340147: a(n) = A000265(A247074(A003961(n))).
6

%I #9 Dec 30 2020 20:00:40

%S 1,1,1,3,1,1,1,9,5,3,1,3,1,5,3,27,1,5,1,9,5,3,1,9,7,1,25,15,1,3,1,81,

%T 3,9,15,15,1,11,1,27,1,5,1,9,5,7,1,27,11,21,9,3,1,25,1,45,11,15,1,9,1,

%U 9,25,243,3,3,1,27,7,3,1,45,1,5,21,33,15,1,1,81,125,21,1,15,3,23,15,27,1,15,5,21,9,13,33

%N Odd part of A340147: a(n) = A000265(A247074(A003961(n))).

%C Each term a(n) is a divisor of A340075(n), at n=85 occurs the first proper divisor.

%H Antti Karttunen, <a href="/A340149/b340149.txt">Table of n, a(n) for n = 1..8191</a>

%H Antti Karttunen, <a href="/A340149/a340149.txt">Data supplement: n, a(n) computed for n = 1..65537</a>

%H <a href="/index/Pri#prime_indices">Index entries for sequences computed from indices in prime factorization</a>

%F a(n) = A000265(A340147(n)) = A000265(A247074(A003961(n))).

%o (PARI)

%o A000265(n) = (n>>valuation(n,2));

%o A003961(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };

%o A247074(n) = { my(f=factor(n)); eulerphi(f)/prod(i=1, #f~, gcd(f[i, 1]-1, n-1)); }; \\ From A247074

%o A340149(n) = A000265(A247074(A003961(n)));

%Y Cf. A000265, A003961, A247074, A340147, A340150 (positions of ones).

%Y Differs from related A340075 for the first time at n=85, where a(85) = 3, while A340075(85) = 9.

%K nonn

%O 1,4

%A _Antti Karttunen_, Dec 30 2020