Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #21 Apr 01 2021 23:09:54
%S 1083289,3818929,6104641,6868801,7623529,8465209,9033649,10105489,
%T 11400481,11597569,11809561,12338041,12348961,13154761,13426009,
%U 15861169,16889161,16922161,18596449,19684729,20322481,21067201,21480001,22684561,23654569,24531049
%N Least prime numbers, in ascending order, such that each of them can be written, in a unique way, in the form x^2 + h*y^2, where x, y are natural numbers, while h takes all the values of the sequence A000926 (idoneal numbers).
%C First number in this sequence is equal to last number of sequence A338088.
%C The sequence is obtained using Lista(m), with m=246*10^5, see section PROG. It's possible to increase m to discover more terms of the sequence.
%e 1083289 = 315^2 + A000926(1)*992^2
%e = 1033^2 + A000926(2)*90^2
%e = 979^2 + A000926(3)*204^2
%e = ...
%e = 817^2 + A000926(65)*15^2.
%o (PARI) Idoneal()={return(select(m->!#select(k->k<>2, quadclassunit(-4*m).cyc), [1..1848]));}
%o isok(p,u)={my (i, s, n=matsize(u)[2], t=0);for(i=1, n, s=kronecker(-u[i],p); if(s==1, t++,break));if(t==n,t=0;for(i=1, n, s=qfbsolve(Qfb(1,0,u[i]),p); if(s==[], break,t++)));if(t==n,1,0)}
%o Primo(p, m)={my(u=Idoneal()); while(p<m, p=nextprime(p+1); if(isok(p,u),return(p)));return(0)}
%o Lista(m)={ my (q,r=108*10^4,v=[]); q=nextprime(r); m=precprime(m); while(q<m,r=q;q=Primo(r,m);if(q>r,v=concat(v,q),q=m)); return(v);}
%Y Cf. A000926, A338088.
%K nonn
%O 1,1
%A _Marco Frigerio_, Dec 29 2020