login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = (n-1) / gcd(n-1, A091732(n)), where A091732 is an infinitary analog of Euler's phi function.
4

%I #5 Dec 31 2020 08:21:08

%S 0,1,1,1,1,5,1,7,1,9,1,11,1,13,7,1,1,17,1,19,5,21,1,23,1,25,13,3,1,29,

%T 1,31,8,33,17,35,1,37,19,13,1,41,1,43,11,45,1,47,1,49,25,17,1,53,27,

%U 55,14,57,1,59,1,61,31,7,4,13,1,67,17,23,1,71,1,73,37,25,19,77,1,79,1,81,1,83,21,85,43,29,1,89

%N a(n) = (n-1) / gcd(n-1, A091732(n)), where A091732 is an infinitary analog of Euler's phi function.

%H Antti Karttunen, <a href="/A340089/b340089.txt">Table of n, a(n) for n = 1..65537</a>

%F a(n) = (n-1) / A340087(n) = (n-1) / gcd(n-1, A091732(n)).

%o (PARI)

%o ispow2(n) = (n && !bitand(n,n-1));

%o A302777(n) = ispow2(isprimepower(n));

%o A091732(n) = { my(m=1); while(n > 1, fordiv(n, d, if((d<n)&&A302777(n/d), m *= ((n/d)-1); n = d; break))); (m); };

%o A340089(n) = ((n-1)/gcd(n-1, A091732(n)));

%Y Cf. A091732, A340087, A340088.

%Y Cf. also A160596.

%K nonn

%O 1,6

%A _Antti Karttunen_, Dec 31 2020