Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #13 Dec 30 2020 19:59:29
%S 1,1,1,3,1,1,1,9,5,3,1,3,1,5,3,27,1,5,1,9,5,3,1,9,7,1,25,15,1,3,1,81,
%T 3,9,15,15,1,11,1,27,1,5,1,9,5,7,1,27,11,21,9,3,1,25,1,45,11,15,1,9,1,
%U 9,25,243,3,3,1,27,7,3,1,45,1,5,21,33,15,1,1,81,125,21,1,15,9,23,15,27,1,15,5,21,9,13,33,81
%N The odd part of A340072(n).
%C Each term a(n) is a multiple of A340149(n), therefore, as both sequences have only positive terms, it follows that if a(n) = 1 then A340149(n) = 1 also, but not necessarily vice versa.
%H Antti Karttunen, <a href="/A340075/b340075.txt">Table of n, a(n) for n = 1..8191</a>
%H Antti Karttunen, <a href="/A340075/a340075.txt">Data supplement: n, a(n) computed for n = 1..65537</a>
%H <a href="/index/Pri#prime_indices">Index entries for sequences computed from indices in prime factorization</a>
%F a(n) = A000265(A340072(n)).
%F a(n) = A339904(n) / A340074(n) = A339904(n) / gcd(A003961(n)-1, A339904(n)).
%F For all n >= 0, a(A019565(n)) = A339901(n).
%o (PARI)
%o A000265(n) = (n>>valuation(n,2));
%o A003961(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
%o A340072(n) = { my(x=A003961(n), u=eulerphi(x)); u/gcd(x-1, u); };
%o A340075(n) = A000265(A340072(n));
%Y Cf. A000265, A003961, A019565, A339901, A339904, A340072, A340074, A340076 (positions of ones), A340149 (differs from the first time at n=85).
%K nonn
%O 1,4
%A _Antti Karttunen_, Dec 28 2020