%I #13 Feb 07 2021 06:25:28
%S 1,2,3,4,5,7,8,9,11,13,17,19,23,25,27,29,31,37,41,43,47,48,49,53,59,
%T 61,67,71,73,79,80,83,89,97,101,103,107,109,112,113,121,125,127,131,
%U 137,139,144,149,151,157,162,163,167,169,173,176,179,181,191,193
%N Numbers that can be factored into distinct primes or semiprimes in exactly one way.
%C A semiprime (A001358) is a product of any two prime numbers.
%H Amiram Eldar, <a href="/A339841/b339841.txt">Table of n, a(n) for n = 1..10000</a>
%H Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/DegreeSequence.html">Degree Sequence.</a>
%H Gus Wiseman, <a href="/A339741/a339741_1.txt">Counting and ranking factorizations, factorability, and vertex-degree partitions for groupings into pairs.</a>
%e The sequence of terms together with their one factorization begins:
%e 1 = 29 = 29 80 = 2*4*10
%e 2 = 2 31 = 31 83 = 83
%e 3 = 3 37 = 37 89 = 89
%e 4 = 4 41 = 41 97 = 97
%e 5 = 5 43 = 43 101 = 101
%e 7 = 7 47 = 47 103 = 103
%e 8 = 2*4 48 = 2*4*6 107 = 107
%e 9 = 9 49 = 49 109 = 109
%e 11 = 11 53 = 53 112 = 2*4*14
%e 13 = 13 59 = 59 113 = 113
%e 17 = 17 61 = 61 121 = 121
%e 19 = 19 67 = 67 125 = 5*25
%e 23 = 23 71 = 71 127 = 127
%e 25 = 25 73 = 73 131 = 131
%e 27 = 3*9 79 = 79 137 = 137
%e For example, we have 360 = 2*3*6*10, so 360 is in the sequence. But 360 is absent from A293511, because we also have 360 = 2*6*30.
%t facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
%t Select[Range[100],Length[Select[facs[#],UnsameQ@@#&&SubsetQ[{1,2},PrimeOmega/@#]&]]==1&]
%Y See link for additional cross-references.
%Y These are the positions of ones in A339839.
%Y The version for no factorizations is A339840.
%Y The version for at least one factorization is A339889.
%Y A001055 counts factorizations.
%Y A001358 lists semiprimes, with squarefree case A006881.
%Y A037143 lists primes and semiprimes.
%Y A293511 are a product of distinct squarefree numbers in exactly one way.
%Y A320663 counts non-isomorphic multiset partitions into singletons or pairs.
%Y A338915 counts partitions that cannot be partitioned into distinct pairs.
%Y Cf. A002494, A013929, A028260, A320893, A320922, A339618, A339740, A339846.
%K nonn
%O 1,2
%A _Gus Wiseman_, Dec 25 2020