login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(1) = 1; a(n+1) = 1 + Sum_{d|n} a(n/d) * a(d).
4

%I #7 Dec 16 2020 08:05:58

%S 1,2,5,11,27,55,131,263,571,1168,2445,4891,10113,20227,40979,82229,

%T 165632,331265,665365,1330731,2666729,5334769,10679319,21358639,

%U 42740683,85482096,171004645,342015001,684113793,1368227587,2736633741,5473267483,10946869669,21893763789,43788190107

%N a(1) = 1; a(n+1) = 1 + Sum_{d|n} a(n/d) * a(d).

%F G.f.: x * (1/(1 - x) + Sum_{i>=1} Sum_{j>=1} a(i) * a(j) * x^(i*j)).

%F a(n) ~ c * 2^n, where c = 1.27442410710035207761153205319824525254716841098942446508584158048310907298... - _Vaclav Kotesovec_, Dec 16 2020

%p a:= proc(n) option remember; uses numtheory;

%p 1+add(a(d)*a((n-1)/d), d=divisors(n-1))

%p end:

%p seq(a(n), n=1..35); # _Alois P. Heinz_, Dec 15 2020

%t a[1] = 1; a[n_] := a[n] = 1 + Sum[a[(n - 1)/d] a[d], {d, Divisors[n - 1]}]; Table[a[n], {n, 1, 35}]

%Y Cf. A038044, A068336, A097558, A122698, A277120, A325303.

%K nonn

%O 1,2

%A _Ilya Gutkovskiy_, Dec 15 2020