login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = (5^(valuation(n, 5) + 1) - 1) / 4.
3

%I #14 Nov 27 2022 02:10:01

%S 1,1,1,1,6,1,1,1,1,6,1,1,1,1,6,1,1,1,1,6,1,1,1,1,31,1,1,1,1,6,1,1,1,1,

%T 6,1,1,1,1,6,1,1,1,1,6,1,1,1,1,31,1,1,1,1,6,1,1,1,1,6,1,1,1,1,6,1,1,1,

%U 1,6,1,1,1,1,31,1,1,1,1,6,1,1,1,1,6,1,1,1,1,6,1,1,1,1,6,1,1,1,1,31

%N a(n) = (5^(valuation(n, 5) + 1) - 1) / 4.

%C Sum of powers of 5 dividing n.

%C Denominator of the quotient sigma(5*n) / sigma(n).

%H Amiram Eldar, <a href="/A339747/b339747.txt">Table of n, a(n) for n = 1..10000</a>

%F G.f.: Sum_{k>=0} 5^k * x^(5^k) / (1 - x^(5^k)).

%F L.g.f.: -log(Product_{k>=0} (1 - x^(5^k))).

%F Dirichlet g.f.: zeta(s) / (1 - 5^(1 - s)).

%F a(n) = sigma(n)/(sigma(5*n) - 5*sigma(n)), where sigma(n) = A000203(n). - _Peter Bala_, Jun 10 2022

%F From _Amiram Eldar_, Nov 27 2022: (Start)

%F Multiplicative with a(5^e) = (5^(e+1)-1)/4, and a(p^e) = 1 for p != 5.

%F Sum_{k=1..n} a(k) ~ n*log_5(n) + (1/2 + (gamma - 1)/log(5))*n, where gamma is Euler's constant (A001620). (End)

%t Table[(5^(IntegerExponent[n, 5] + 1) - 1)/4, {n, 1, 100}]

%t nmax = 100; CoefficientList[Series[Sum[5^k x^(5^k)/(1 - x^(5^k)), {k, 0, Floor[Log[5, nmax]] + 1}], {x, 0, nmax}], x] // Rest

%o (PARI) a(n) = (5^(valuation(n, 5) + 1) - 1)/4; \\ _Amiram Eldar_, Nov 27 2022

%Y Cf. A000203, A001620, A038712, A060904, A080278, A088842, A112765, A323921, A339748.

%K nonn,mult

%O 1,5

%A _Ilya Gutkovskiy_, Dec 15 2020