login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = Sum_{d|n} 9^(d-1).
10

%I #18 Jun 26 2024 02:05:59

%S 1,10,82,739,6562,59140,531442,4783708,43046803,387427060,3486784402,

%T 31381119478,282429536482,2541866359780,22876792461604,

%U 205891136878357,1853020188851842,16677181742772430,150094635296999122,1350851718060419878,12157665459057460324

%N a(n) = Sum_{d|n} 9^(d-1).

%H Seiichi Manyama, <a href="/A339689/b339689.txt">Table of n, a(n) for n = 1..1000</a>

%F G.f.: Sum_{k>=1} x^k / (1 - 9*x^k).

%F G.f.: Sum_{k>=1} 9^(k-1) * x^k / (1 - x^k).

%F a(n) ~ 9^(n-1). - _Vaclav Kotesovec_, Jun 05 2021

%t Table[Sum[9^(d - 1), {d, Divisors[n]}], {n, 1, 21}]

%t nmax = 21; CoefficientList[Series[Sum[x^k/(1 - 9 x^k), {k, 1, nmax}], {x, 0, nmax}], x] // Rest

%o (PARI) a(n) = sumdiv(n, d, 9^(d-1)); \\ _Michel Marcus_, Dec 13 2020

%o (Magma)

%o A339689:= func< n | (&+[9^(d-1): d in Divisors(n)]) >;

%o [A339689(n): n in [1..40]]; // _G. C. Greubel_, Jun 25 2024

%o (SageMath)

%o def A339689(n): return sum(9^(k-1) for k in (1..n) if (k).divides(n))

%o [A339689(n) for n in range(1,41)] # _G. C. Greubel_, Jun 25 2024

%Y Column 9 of A308813.

%Y Cf. A001019, A320074.

%Y Sums of the form Sum_{d|n} q^(d-1): A034729 (q=2), A034730 (q=3), A113999 (q=10), A339684 (q=4), A339685 (q=5), A339686 (q=6), A339687 (q=7), A339688 (q=8), this sequence (q=9).

%K nonn

%O 1,2

%A _Ilya Gutkovskiy_, Dec 12 2020