OFFSET
1,1
COMMENTS
The first term is A308365(19).
G. J. Simmons conjectured there are no palindromes of form n^k for k >= 5 (and n > 1) (see link, page 98). According to this conjecture, these perfect powers are terms: {11^k, k>=4}, {111^k, k>=4}, {1111^k, k>=3}, {11111^k, k>=3}, ...
LINKS
David A. Corneth, Table of n, a(n) for n = 1..10000
Gustavus J. Simmons, Palindromic Powers, J. Rec. Math., 3 (No. 2, 1970), 93-98 [Annotated scanned copy].
EXAMPLE
a(1) = 161051 = 11^5.
a(2) = 1490841 = 11^2 * 111^2.
a(3) = 1625151 = 11^4 * 111.
a(4) = 1771561 = 11^6.
a(5) = 14921841 = 11^2 * 111 * 1111.
MATHEMATICA
vec[max_] := Module[{m = Floor @ Log10[9*max + 1], r, s = {1}, s1}, r = (10^Range[2, m] - 1)/9; Do[emax = Floor@Log[r[[k]], max]; s1 = r[[k]]^Range[0, emax]; s = Select[Union[Flatten[Outer[Times, s, s1]]], # <= max &], {k, 1, m - 1}]; s]; Select[vec[1.5*10^9], !PalindromeQ[#] &] (* Amiram Eldar, Dec 12 2020 *)
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Bernard Schott, Dec 12 2020
STATUS
approved