The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A339676 Nonpalindromic numbers that are products of repunits. 3
 161051, 1490841, 1625151, 1771561, 14921841, 15043941, 16266151, 16399251, 17876661, 19487171, 137009631, 149231841, 149352841, 150574941, 151807041, 162676151, 164140251, 165483351, 178927661, 180391761, 196643271, 214358881, 1370219631, 1371330631, 1492331841 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS The first term is A308365(19). G. J. Simmons conjectured there are no palindromes of form n^k for k >= 5 (and n > 1) (see link, page 98). According to this conjecture, these perfect powers are terms: {11^k, k>=4}, {111^k, k>=4}, {1111^k, k>=3}, {11111^k, k>=3}, ... LINKS David A. Corneth, Table of n, a(n) for n = 1..10000 Gustavus J. Simmons, Palindromic Powers, J. Rec. Math., 3 (No. 2, 1970), 93-98 [Annotated scanned copy]. EXAMPLE a(1) = 161051 = 11^5. a(2) = 1490841 = 11^2 * 111^2. a(3) = 1625151 = 11^4 * 111. a(4) = 1771561 = 11^6. a(5) = 14921841 = 11^2 * 111 * 1111. MATHEMATICA vec[max_] := Module[{m = Floor @ Log10[9*max + 1], r, s = {1}, s1}, r = (10^Range[2, m] - 1)/9; Do[emax = Floor@Log[r[[k]], max]; s1 = r[[k]]^Range[0, emax]; s = Select[Union[Flatten[Outer[Times, s, s1]]], # <= max &], {k, 1, m - 1}]; s]; Select[vec[1.5*10^9], !PalindromeQ[#] &] (* Amiram Eldar, Dec 12 2020 *) CROSSREFS Intersection of A308365 and A029742. Cf. A083278, A334131. Sequence in context: A287297 A296117 A038681 * A017285 A017393 A017657 Adjacent sequences:  A339673 A339674 A339675 * A339677 A339678 A339679 KEYWORD nonn,base AUTHOR Bernard Schott, Dec 12 2020 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 15 19:31 EDT 2021. Contains 345049 sequences. (Running on oeis4.)