login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of nonempty subsets of divisors of n having a common factor > 1.
1

%I #8 Dec 15 2021 17:32:28

%S 0,1,1,3,1,5,1,7,3,5,1,19,1,5,5,15,1,19,1,19,5,5,1,71,3,5,7,19,1,37,1,

%T 31,5,5,5,111,1,5,5,71,1,37,1,19,19,5,1,271,3,19,5,19,1,71,5,71,5,5,1,

%U 347,1,5,19,63,5,37,1,19,5,37,1,703,1,5,19,19,5,37,1,271

%N Number of nonempty subsets of divisors of n having a common factor > 1.

%H Antti Karttunen, <a href="/A339667/b339667.txt">Table of n, a(n) for n = 1..20000</a>

%H <a href="/index/Di#divisors">Index entries for sequences related to divisors of numbers</a>

%F a(n) = -Sum_{d|n, d < n} mu(n/d) * (2^tau(d) - 1), where tau = A000005, and mu = A008683.

%F a(n) = A100587(n) - A076078(n).

%F a(p) = 1 for p prime.

%e a(12) = 19 subsets: {2}, {3}, {4}, {6}, {12}, {2, 4}, {2, 6}, {2, 12}, {3, 6}, {3, 12}, {4, 6}, {4, 12}, {6, 12}, {2, 4, 6}, {2, 4, 12}, {2, 6, 12}, {3, 6, 12}, {4, 6, 12} and {2, 4, 6, 12}.

%t Table[-DivisorSum[n, MoebiusMu[n/#] (2^DivisorSigma[0, #] - 1) &, # < n &], {n, 80}]

%o (PARI) A339667(n) = -sumdiv(n, d, if(d==n,0, moebius(n/d)*((2^numdiv(d))-1))); \\ _Antti Karttunen_, Dec 15 2021

%Y Cf. A000005, A008683, A027750, A076078, A100587, A109511.

%K nonn

%O 1,4

%A _Ilya Gutkovskiy_, Dec 12 2020