Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #11 Jan 05 2021 19:07:39
%S 1,0,0,1,0,0,0,1,1,0,0,0,1,2,1,1,0,0,0,0,2,3,2,1,1,0,0,0,0,1,4,5,3,2,
%T 1,1,0,0,0,0,1,4,7,7,5,3,2,1,1,0,0,0,0,0,4,9,11,11,7,5,3,2,1,1,0,0,0,
%U 0,0,2,11,15,17,15,11,7,5,3,2,1,1
%N Irregular triangle read by rows where T(n,k) is the number of graphical partitions of 2n into k parts, 0 <= k <= 2n.
%C Conjecture: The column sums 1, 0, 1, 2, 7, 20, 67, ... are given by A304787.
%C An integer partition is graphical if it comprises the multiset of vertex-degrees of some graph. Graphical partitions are counted by A000569.
%e Triangle begins:
%e 1
%e 0 0 1
%e 0 0 0 1 1
%e 0 0 0 1 2 1 1
%e 0 0 0 0 2 3 2 1 1
%e 0 0 0 0 1 4 5 3 2 1 1
%e 0 0 0 0 1 4 7 7 5 3 2 1 1
%e For example, row n = 5 counts the following partitions:
%e 3322 22222 222211 2221111 22111111 211111111 1111111111
%e 32221 322111 3211111 31111111
%e 33211 331111 4111111
%e 42211 421111
%e 511111
%t prpts[m_]:=If[Length[m]==0,{{}},Join@@Table[Prepend[#,ipr]&/@prpts[Fold[DeleteCases[#1,#2,{1},1]&,m,ipr]],{ipr,Subsets[Union[m],{2}]}]];
%t strnorm[n_]:=Flatten[MapIndexed[Table[#2,{#1}]&,#]]&/@IntegerPartitions[n];
%t Table[Length[Select[strnorm[2*n],Length[Union[#]]==k&&Select[prpts[#],UnsameQ@@#&]!={}&]],{n,0,5},{k,0,2*n}]
%Y A000569 gives the row sums.
%Y A004250 is the central column.
%Y A005408 gives the row lengths.
%Y A008284/A072233 is the version counting all partitions.
%Y A259873 is the left half of the triangle.
%Y A309356 is a universal embedding.
%Y A027187 counts partitions of even length.
%Y A339559 = partitions that cannot be partitioned into distinct strict pairs.
%Y A339560 = partitions that can be partitioned into distinct strict pairs.
%Y The following count vertex-degree partitions and give their Heinz numbers:
%Y - A000070 counts non-multigraphical partitions of 2n (A339620).
%Y - A000569 counts graphical partitions (A320922).
%Y - A058696 counts partitions of 2n (A300061).
%Y - A147878 counts connected multigraphical partitions (A320925).
%Y - A209816 counts multigraphical partitions (A320924).
%Y - A320921 counts connected graphical partitions (A320923).
%Y - A321728 is conjectured to count non-half-loop-graphical partitions of n.
%Y - A339617 counts non-graphical partitions of 2n (A339618).
%Y - A339655 counts non-loop-graphical partitions of 2n (A339657).
%Y - A339656 counts loop-graphical partitions (A339658).
%Y Cf. A000219, A002100, A006881, A007717, A025065, A320656, A320894, A338914, A338916, A339561, A339661.
%K nonn,tabf
%O 0,14
%A _Gus Wiseman_, Dec 18 2020