login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of rooted trees on n nodes with labels covering an initial interval of positive integers.
2

%I #14 Jan 04 2021 09:56:52

%S 1,3,21,214,3004,53696,1169220,30017582,887835091,29728120594,

%T 1111619802614,45914106227815,2076062017348677,101996651482313080,

%U 5410363994433018486,308174409706787225523,18760485689929220881741,1215547422537201878074293,83520534389622385511232635

%N Number of rooted trees on n nodes with labels covering an initial interval of positive integers.

%H Andrew Howroyd, <a href="/A339644/b339644.txt">Table of n, a(n) for n = 1..200</a>

%e The a(3) = 21 rooted trees are:

%e (1(11)), (1(1(1))), (1(12)), (1(22)), (1(1(2))), (1(2(1))), (1(2(2))), (2(12)), (2(11)), (2(2(1))), (2(1(2))), (2(1(1))), (1(23)), (1(2(3))), (1(3(2))), (2(13)), (2(1(3))), (2(3(1))), (3(12)), (3(1(2))), (3(2(1))).

%p b:= proc(n, k) option remember; `if`(n<2, k*n, (add(add(b(d, k)*

%p d, d=numtheory[divisors](j))*b(n-j, k), j=1..n-1))/(n-1))

%p end:

%p a:= n-> add(add(b(n, k-j)*binomial(k, j)*(-1)^j, j=0..k), k=0..n):

%p seq(a(n), n=1..21); # _Alois P. Heinz_, Dec 11 2020

%t b[n_, k_] := b[n, k] = If[n<2, k*n, (Sum[Sum[b[d, k]*d, {d, Divisors[j]}]* b[n - j, k], {j, 1, n - 1}])/(n - 1)];

%t a[n_] := Sum[Sum[b[n, k - j]*Binomial[k, j]*(-1)^j, {j, 0, k}], {k, 0, n}];

%t Array[a, 21] (* _Jean-François Alcover_, Jan 04 2021, after _Alois P. Heinz_ *)

%o (PARI) \\ See A141610 for U(n, k).

%o seq(n)={sum(k=1, n, U(n, k)*sum(r=k, n, binomial(r, k)*(-1)^(r-k)))}

%Y Row sums of A141610.

%K nonn

%O 1,2

%A _Andrew Howroyd_, Dec 11 2020