login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of nonempty sets of distinct positive integers that have a least common multiple <= n.
1

%I #10 Dec 25 2020 10:37:34

%S 1,3,5,9,11,21,23,31,35,45,47,91,93,103,113,129,131,175,177,221,231,

%T 241,243,427,431,441,449,493,495,713,715,747,757,767,777,1177,1179,

%U 1189,1199,1383,1385,1603,1605,1649,1693,1703,1705,2457,2461,2505,2515,2559,2561,2745,2755

%N Number of nonempty sets of distinct positive integers that have a least common multiple <= n.

%C Partial sums of A076078.

%H Vaclav Kotesovec, <a href="/A339638/b339638.txt">Table of n, a(n) for n = 1..10000</a>

%H <a href="/index/Lc#lcm">Index entries for sequences related to lcm's</a>

%F a(n) = Sum_{k=1..n} Sum_{d|k} mu(k/d) * (2^tau(d) - 1), where tau = A000005.

%e a(5) = 11 sets: {1}, {2}, {3}, {4}, {5}, {1, 2}, {1, 3}, {1, 4}, {1, 5}, {2, 4} and {1, 2, 4}.

%t Table[Sum[Sum[MoebiusMu[k/d] (2^DivisorSigma[0, d] - 1), {d, Divisors[k]}], {k, n}], {n, 55}]

%t Accumulate[Table[Sum[MoebiusMu[k/d] (2^DivisorSigma[0, d] - 1), {d, Divisors[k]}], {k, 1, 60}]] (* _Vaclav Kotesovec_, Dec 25 2020 *)

%o (PARI) a(n) = sum(k=1, n, sumdiv(k, d, moebius(k/d) * (2^numdiv(d) - 1))); \\ _Michel Marcus_, Dec 11 2020

%Y Cf. A000005, A076078, A100587.

%K nonn

%O 1,2

%A _Ilya Gutkovskiy_, Dec 11 2020