login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Irregular triangle read by rows: T(n,k) (n>=2, k>=1) = number of strong tournaments on n nodes with k descents.
3

%I #15 Jan 01 2021 15:30:47

%S 0,1,1,1,6,10,6,1,1,13,56,123,158,123,56,13,1,1,22,172,717,1910,3547,

%T 4791,4791,3547,1910,717,172,22,1,1,33,402,2674,11614,36293,86305,

%U 161529,242890,297003,297003,242890,161529,86305,36293,11614,2674,402,33,1

%N Irregular triangle read by rows: T(n,k) (n>=2, k>=1) = number of strong tournaments on n nodes with k descents.

%D Archer, K., Gessel, I. M., Graves, C., & Liang, X. (2020). Counting acyclic and strong digraphs by descents. Discrete Mathematics, 343(11), 112041.

%H Kassie Archer, Ira M. Gessel, Christina Graves, and Xuming Liang, <a href="https://arxiv.org/abs/1909.01550">Counting acyclic and strong digraphs by descents</a>, arXiv:1909.01550 [math.CO], 20 Mar 2020.

%e Triangle begins:

%e 0;

%e 1, 1;

%e 1, 6, 10, 6, 1;

%e 1, 13, 56, 123, 158, 123, 56, 13, 1;

%e 1, 22, 172, 717, 1910, 3547, 4791, 4791, 3547, 1910, 717, 172, 22, 1;

%e 1, 33, 402, 2674, 11614, 36293, 86305, 161529, 242890, 297003, 297003, 242890, 161529, 86305, 36293, 11614, 2674, 402, 33, 1;

%e ...

%Y Row sums are A054946.

%Y Cf. A057273, A339807.

%K nonn,tabf

%O 2,5

%A _N. J. A. Sloane_, Dec 28 2020