login
A339513
Define R_{1}(x)=1, R_{n+1}(x)=(R_n(x)*2*x/(1+x^2))'; then a(n)=R_{n}(1).
1
1, 0, -1, 3, -2, -45, 347, -756, -13031, 184245, -810034, -11404503, 264733177, -1931955480, -21453955777, 796153961091, -8688345850874, -69492467459925, 4300450718587619, -65896562313762012, -307002797419794407, 37668399518087366325
OFFSET
1,4
COMMENTS
Let (R_n) be the sequence of rational functions satisfying: R_1(x) = 1; R_{n+1}(x) = (R_n(x) * 2*x/(1+x^2))'. By definition, a(n) = R_n(1).
Applying [Dominici, Theorem 4.1] proves that the e.g.f. of this sequence is the series reversion of log(1+x)/2 + x^2/4 + x/2.
FORMULA
a(n) = (Sum_{k=0..n-1} (-1)^k*A214406(n-1,k))/2^(n-1).
a(n) = Sum_{P partition of n-1} A145271(P) * Product_{p part of P} A090932(p)*A075553(p+3).
E.g.f.: series reversion of log(1+x)/2 + x^2/4 + x/2.
EXAMPLE
R_1(x) = 1,
so a(1) = R_1(1) = 1.
R_2(x) = (R_1(x)*2*x/(1+x^2))' = (1 * 2*x/(1+x^2))' = 2*(1-x^2)/(1+x^2)^2,
so a(2) = R_2(1) = 0.
R_3(x) = (R_2(x)*2*x/(1+x^2))' = (2*(1-x^2)/(1+x^2)^2 * 2*x/(1+x^2))' = 4*(1-8*x^2+3*x^4)/(1+x^2)^4, so a(3) = R_3(1) = -1.
PROG
(PARI)
list_a(nmax)=my(n, r); n=1; r=1; print1(subst(r, x, 1), ", "); while(n<nmax, n++; r=(r*2*x/(1+x^2))'; print1(subst(r, x, 1), ", "))
list_a(50)
(PARI) my(x='x+O('x^33)); Vec(serlaplace(serreverse(log(1+x)/2 + x^2/4 + x/2))) \\ Joerg Arndt, Dec 22 2020
CROSSREFS
KEYWORD
sign
AUTHOR
Luc Rousseau, Dec 07 2020
STATUS
approved