login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) is the area of the n-gon with vertices (3^i, 5^i) for 0 <= i <= n-1.
1

%I #12 Dec 07 2020 16:42:06

%S 8,192,3344,52800,806168,12166272,182871584,2744987520,41184460328,

%T 617815378752,9267473759024,139013323899840,2085205952447288,

%U 31278119775589632,469171949135641664,7037579999715797760,105563703809659391048,1583455576216052670912,23751833738601248135504,356277506555834959529280

%N a(n) is the area of the n-gon with vertices (3^i, 5^i) for 0 <= i <= n-1.

%H Robert Israel, <a href="/A339487/b339487.txt">Table of n, a(n) for n = 3..851</a>

%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (24, -158, 360, -225).

%F a(n) = -1/14 - 5^n/10 + 3^n/6 + 15^n/210.

%F G.f.: 8*x^3/(225*x^4-360*x^3+158*x^2-24*x+1).

%e a(3) is the area of the triangle with vertices (1,1), (3,5) and (9,25), which is 8.

%p f:= n -> -1/14 - 5^n/10 + 3^n/6 + 15^n/210:

%p map(f, [$3..30]);

%t Drop[CoefficientList[Series[8 x^3/(225 x^4 - 360 x^3 + 158 x^2 - 24 x + 1), {x, 0, 22}], x], 3] (* _Michael De Vlieger_, Dec 07 2020 *)

%K nonn

%O 3,1

%A _J. M. Bergot_ and _Robert Israel_, Dec 07 2020