login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

If n = p_1 * ... * p_m with primes p_i <= p_{i+1}, a(n) = Sum_{j=1..m-1} p_1*...*p_j + Sum_{j=2..m} p_j*...*p_m.
3

%I #17 Dec 08 2020 21:15:03

%S 0,0,4,0,5,0,12,6,7,0,15,0,9,8,28,0,20,0,21,10,13,0,35,10,15,24,27,0,

%T 28,0,60,14,19,12,48,0,21,16,49,0,36,0,39,32,25,0,75,14,42,20,45,0,65,

%U 16,63,22,31,0,68,0,33,40,124,18,52,0,57,26,54,0,104,0,39,48,63,18,60,0,105,78,43

%N If n = p_1 * ... * p_m with primes p_i <= p_{i+1}, a(n) = Sum_{j=1..m-1} p_1*...*p_j + Sum_{j=2..m} p_j*...*p_m.

%C a(n) is the sum of proper prefixes and suffixes of the prime factorization of n.

%C a(n)=0 if n is prime.

%C a(n)=p+q if n=p*q is a semiprime.

%C First differs from A288654 at n=30, with a(30)=28 while A288654(30)=0.

%H Robert Israel, <a href="/A339436/b339436.txt">Table of n, a(n) for n = 2..10000</a>

%e 12=2*2*3 so a(12) = 2 + 2*2 + 2*3 + 3 = 15.

%p f:= proc(n) local L,m;

%p L:= sort(map(t -> t[1]$t[2],ifactors(n)[2]));

%p m:= nops(L);

%p add(mul(L[i],i=1..j)+mul(L[i],i=j+1..m),j=1..m-1)

%p end proc:

%p map(f, [$2..100]);

%o (PARI) conv(n) = {my(f=factor(n), v=vector(bigomega(n)), k=1); for (i=1, #f~, for (j=1, f[i,2], v[k] = f[i,1]; k++;);); v;}

%o a(n) = my(v=conv(n)); sum(j=1, #v-1, prod(k=1, j, v[k])) + sum(j=2, #v, prod(k=j, #v, v[k])); \\ _Michel Marcus_, Dec 04 2020

%Y Cf. A288654.

%K nonn

%O 2,3

%A _J. M. Bergot_ and _Robert Israel_, Dec 04 2020