login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A339412
a(n) = floor(x(n)) where x(n) = (frac(x(n-1))+1)*floor(x(n-1)) and x(1) = Pi.
1
3, 3, 4, 5, 5, 7, 10, 10, 13, 17, 31, 35, 67, 123, 223, 305, 414, 822, 1550, 2224, 3273, 4560, 7804, 14372, 15493, 20080, 40039, 44226, 71916, 130773, 183760, 316165, 613602, 1066559, 1138668, 1202427, 2022144, 2251837, 2477524, 4479491, 7192184, 11256849
OFFSET
1,1
COMMENTS
Inspired by A249270.
LINKS
James Grime and Brady Haran, 2.920050977316, Numberphile video, Nov 26 2020.
MAPLE
b:= proc(n) option remember; `if`(n=1, Pi,
(f-> (frac(f)+1)*floor(f))(b(n-1)))
end:
a:= n-> floor(b(n)):
seq(a(n), n=1..50); # Alois P. Heinz, Dec 03 2020
MATHEMATICA
Block[{a = {Pi}, $MaxExtraPrecision = 10^3}, Do[AppendTo[a, (FractionalPart[#] + 1) Floor[#]] &@ a[[-1]], 41]; Floor /@ a] (* Michael De Vlieger, Dec 04 2020 *)
PROG
(NARS2000) {(⌊{(⌊⍵)×1+1|⍵}⍣⍵)○1x}¨0, ⍳100
(PARI) lista(nn) = {localprec(500); my(vx = vector(nn)); vx[1] = Pi; for (n=2, nn, vx[n] = (frac(vx[n-1])+1)*floor(vx[n-1]); ); apply(floor, vx); } \\ Michel Marcus, Dec 03 2020
CROSSREFS
Sequence in context: A274004 A196592 A120180 * A279400 A063197 A327226
KEYWORD
nonn
AUTHOR
Michael Turniansky, Dec 03 2020
STATUS
approved