Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #15 Dec 09 2020 04:39:38
%S 1,28,225,1540,10217,67388,444017,2925140,19270105,126946444,
%T 836290209,5509263332,36293601737,239092863324,1575081964113,
%U 10376232739316,68355938510649,450311249502892,2966534083948417,19542759549039748,128742647137776169,848123272992954492
%N Number of (undirected) cycles in the graph C_4 X P_n.
%H Seiichi Manyama, <a href="/A339137/b339137.txt">Table of n, a(n) for n = 1..1000</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/GraphCycle.html">Graph Cycle</a>
%F Empirical g.f.: -x*(6*x^3+29*x^2-18*x-1) / ((x-1)^2 * (2*x^3+9*x^2-8*x+1)). - _Vaclav Kotesovec_, Dec 09 2020
%o (Python)
%o # Using graphillion
%o from graphillion import GraphSet
%o def make_CnXPk(n, k):
%o grids = []
%o for i in range(1, k + 1):
%o for j in range(1, n):
%o grids.append((i + (j - 1) * k, i + j * k))
%o grids.append((i + (n - 1) * k, i))
%o for i in range(1, k * n, k):
%o for j in range(1, k):
%o grids.append((i + j - 1, i + j))
%o return grids
%o def A339137(n):
%o universe = make_CnXPk(4, n)
%o GraphSet.set_universe(universe)
%o cycles = GraphSet.cycles()
%o return cycles.len()
%o print([A339137(n) for n in range(1, 20)])
%Y Cf. A003699 (Hamiltonian cycles), A288637, A339075, A339136, A339140, A339142, A339143.
%K nonn
%O 1,2
%A _Seiichi Manyama_, Nov 25 2020