login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Smaller members of binary Ormiston prime pairs: two consecutive primes whose binary representations are anagrams of each other.
3

%I #13 Feb 19 2024 07:31:48

%S 11,23,37,59,83,103,107,131,139,151,167,173,179,199,227,229,263,277,

%T 347,409,419,439,487,491,503,557,563,613,647,653,659,683,719,727,757,

%U 811,823,827,839,853,911,941,947,953,967,997,1019,1063,1091,1093,1123,1163

%N Smaller members of binary Ormiston prime pairs: two consecutive primes whose binary representations are anagrams of each other.

%C Equivalently, the smaller of two consecutive primes with the same length of binary representation (A070939) and the same binary weight (A000120).

%H Amiram Eldar, <a href="/A339080/b339080.txt">Table of n, a(n) for n = 1..10000</a>

%H Jens Kruse Andersen, <a href="http://primerecords.dk/ormiston_tuples.htm">Ormiston Tuples</a>.

%H Andy Edwards, <a href="https://web.archive.org/web/20200410180154if_/https://aamt.edu.au/content/download/742/19588/file/amt-s.pdf">Ormiston Pairs</a>, Australian Mathematics Teacher, Vol. 58, No. 2 (2002), pp. 12-13.

%H Giovanni Resta, <a href="https://www.numbersaplenty.com/set/Ormiston_pair">Ormiston pairs</a>.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/RearrangementPrimePair.html">Rearrangement Prime Pair</a>.

%e 11 is a term since 11 and 13 are consecutive primes whose binary representations, 1011 and 1101, are anagrams of each other.

%t Transpose[Select[Partition[Prime[Range[200]], 2, 1], Sort[IntegerDigits[First[#],2]] == Sort[IntegerDigits[Last[#],2]]&]][[1]] (* after _Harvey P. Dale_ at A069567 *)

%o (Python)

%o from sympy import nextprime

%o from itertools import islice

%o def hash(n): return "".join(sorted(bin(n)[2:]))

%o def agen(start=2): # generator of terms

%o p = nextprime(start-1); q=nextprime(p)

%o hp, hq = list(map(hash, [p, q]))

%o while True:

%o if hp == hq: yield p

%o p, q = q, nextprime(q)

%o hp, hq = hq, hash(q)

%o print(list(islice(agen(), 52))) # _Michael S. Branicky_, Feb 19 2024

%Y Cf. A000120, A069567 (decimal analog), A070939, A072274.

%K nonn,base

%O 1,1

%A _Amiram Eldar_, Nov 22 2020