The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A339057 a(n) = (-1)^(n + 1)*3^(2*n + 1)*Euler(2*n + 1, 1/3)*2^(valuation_{2}(2*(n + 1))), the Steinhaus-Euler sequence S_{3}(n). 1
 1, 13, 121, 18581, 305071, 61203943, 4353296221, 6669149100757, 206772189255571, 128970681211645873, 24697503335329725121, 45583359018138184284551, 6235055851689626935206871, 7982707567621372702411448803, 2955418704408380517540605162821, 40101878131071637461151318174173269 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS Sandor Csörgö, Gordon Simons, On Steinhaus' resolution of the St. Petersburg paradox, Probab. Math. Statist. 14 (1993), 157-172. MR1321758 (96b:60017). EXAMPLE The array of the general case S_{k}(n) starts: [k] [1] -1, -1,   -1,     -17,      -31,        -691,         -5461, ... [-A002425] [2]  0,  0,    0,       0,        0,           0,             0, ... [3]  1, 13,  121,   18581,   305071,    61203943,    4353296221, ... [this seq.] [4]  2, 44,  722,  196888,  5746082,  2049374444,  259141449842, ... [5]  3, 99, 2523, 1074243, 48982293, 27296351769, 5393115879063, ... ... MAPLE GenEuler := k -> (n -> (-1)^n*(-k)^(2*n+1)*euler(2*n+1, 1/k)): Steinhaus := n -> 2^padic[ordp](2*(n+1), 2): seq(Steinhaus(n)*GenEuler(3)(n), n = 0..15); MATHEMATICA GenEuler[n_, k_] := (-1)^n (-k)^(2 n + 1) EulerE[2 n + 1, 1/k] ; Steinhaus[n_] := 2^IntegerExponent[2*(n+1), 2]; a[n_] := GenEuler[n, 3] Steinhaus[n]; Table[a[n], {n, 0, 15}] CROSSREFS Cf. A002425, A339058. Sequence in context: A033470 A297594 A326569 * A016230 A327961 A278276 Adjacent sequences:  A339054 A339055 A339056 * A339058 A339059 A339060 KEYWORD nonn AUTHOR Peter Luschny, Nov 27 2020 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 23 01:37 EST 2021. Contains 340384 sequences. (Running on oeis4.)