login
a(n) gives the multiplicity for A154777(n) representable as x^2 + 2*y^2 with positive integers x and y, for n >= 1.
2

%I #4 Dec 21 2020 07:32:57

%S 1,1,1,1,1,1,1,1,1,1,2,2,1,1,1,1,1,1,1,2,2,2,1,2,1,1,1,1,1,1,2,1,1,1,

%T 1,1,1,1,3,2,1,2,1,2,1,1,2,2,1,2,1,1,1,1,1,1,1,1,1,3,2,1,1,1,3,1,1,2,

%U 1,1,2,1,1,1,3

%N a(n) gives the multiplicity for A154777(n) representable as x^2 + 2*y^2 with positive integers x and y, for n >= 1.

%F a(n) gives the number of occurrences of A154777(n) = x^2 + 2*y^2 with positive integers x and y. This is obtained from triangle A338432.

%e See A338432 for examples.

%e The pairs [A154777(n), a(n)] begin:

%e [3, 1], [6, 1], [9, 1], [11, 1], [12, 1], [17, 1], [18, 1], [19, 1], [22, 1], [24, 1], [27, 2], [33, 2], [34, 1], [36, 1], [38, 1], [41, 1], [43, 1], [44, 1], [48, 1], [51, 2], [54, 2], [57, 2], [59, 1], [66, 2], [67, 1], [68, 1], [72, 1], [73, 1], [75, 1], [76, 1], [81, 2], [82, 1], [83, 1], [86, 1], [88, 1], [89, 1], [96, 1], [97, 1], [99, 3], ...

%Y Cf. A154777, A338432.

%K nonn,easy

%O 1,11

%A _Wolfdieter Lang_, Dec 09 2020