login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) gives the multiplicity for A154777(n) representable as x^2 + 2*y^2 with positive integers x and y, for n >= 1.
2

%I #4 Dec 21 2020 07:32:57

%S 1,1,1,1,1,1,1,1,1,1,2,2,1,1,1,1,1,1,1,2,2,2,1,2,1,1,1,1,1,1,2,1,1,1,

%T 1,1,1,1,3,2,1,2,1,2,1,1,2,2,1,2,1,1,1,1,1,1,1,1,1,3,2,1,1,1,3,1,1,2,

%U 1,1,2,1,1,1,3

%N a(n) gives the multiplicity for A154777(n) representable as x^2 + 2*y^2 with positive integers x and y, for n >= 1.

%F a(n) gives the number of occurrences of A154777(n) = x^2 + 2*y^2 with positive integers x and y. This is obtained from triangle A338432.

%e See A338432 for examples.

%e The pairs [A154777(n), a(n)] begin:

%e [3, 1], [6, 1], [9, 1], [11, 1], [12, 1], [17, 1], [18, 1], [19, 1], [22, 1], [24, 1], [27, 2], [33, 2], [34, 1], [36, 1], [38, 1], [41, 1], [43, 1], [44, 1], [48, 1], [51, 2], [54, 2], [57, 2], [59, 1], [66, 2], [67, 1], [68, 1], [72, 1], [73, 1], [75, 1], [76, 1], [81, 2], [82, 1], [83, 1], [86, 1], [88, 1], [89, 1], [96, 1], [97, 1], [99, 3], ...

%Y Cf. A154777, A338432.

%K nonn,easy

%O 1,11

%A _Wolfdieter Lang_, Dec 09 2020