%I #4 Nov 28 2020 12:46:38
%S 1,1,3,10,31,86,219,526,1215,2734,6043,13190,28527,61270,130875,
%T 278302,589567,1244894,2621115,5504662,11533935,24116806,50331163,
%U 104857070,218103231,452984206,939523419,1946156326,4026531055,8321498294,17179868283,35433479230
%N Expansion of (4*x^5 - 9*x^4 + 17*x^3 - 15*x^2 + 6*x - 1)/((2*x - 1)^2*(x - 1)^3).
%p gf := (4*x^5 - 9*x^4 + 17*x^3 - 15*x^2 + 6*x - 1)/((2*x - 1)^2*(x - 1)^3):
%p ser := series(gf, x, 33): seq(coeff(ser, x, n), n=0..31);
%Y Row sums of A339031.
%Y Cf. A339030.
%K nonn
%O 0,3
%A _Peter Luschny_, Nov 24 2020